
System Verification Based on Modified Interval Analysis

I. Ugarte, P.Sanchez
Microelectronics Engineering Group. TEISA Department. ETSIIT

University of Cantabria
Avda. los Castros s/n. 39005 Santander. Cantabria. Spain

{ ugarte, sanchez }@teisa.unican.es

Abstract – Interval arithmetic was original developed

to estimate rounding errors on floating-point
computations but it is used in a wide variety of
applications from constraint solvers and global
optimizers to power and timing analysis of software
processes. The objective of interval analysis is to
determine the output ranges (or interval) of a
computation set. The main problem of classical interval
analysis is the overestimation of the output ranges and
its dependency on the coding of the system behavior. In
this paper, a modified interval analysis method is
presented. The method reduces the interval
overestimation and it is independent of the coding. This
modified interval analysis is the kernel of a new
verification technique that enables the verification of
functional properties in system level descriptions and
obtains functional test vectors.

Keywords – Interval Arithmetic, System Level
Verification.

I. INTRODUCTION
As system complexity grows, designers describe it

at higher abstraction levels and spend more effort on
verification. In order to confront this growing
complexity, it is essential to define verification
methodologies that allow the validation of the design
during the specification step, at system level.
Simulation is the most widely used verification
technique, but even if coverage metrics are used, it
has several problems (test bench definition,
completeness, etc). Another possibility is to use
formal verification techniques. Some of these are
based on transforming the system description into a
functionally canonical form, such as BDDs, and
deriving the solution from this structure. Other
verification techniques test the satisfiability of
properties (e.g. SAT-based verification [2, 3, 7]) or
combine both approaches. However, these previously
commented approaches generally suffer from
exponential worst-case complexity, because they use
Boolean representations of the system that increase
the number of signals and operators during the
verification processes.

This paper proposes a different type of solution that
takes advantage of the structure of system-level
description. At this level, the system is described with
a set of statements that operate with integer or real
data. Common arithmetic, relational and control
statement are used.

The main objective of the proposed technique is to
find an input range that verifies a set at properties
and/or constraints. In order to do so, interval
arithmetic is used [4]. Although this technique has
been used previously in verification (e.g. timing and
power analysis in software [6]), it has important

drawbacks: overestimation of the output range and
expression dependency. For example, if the behavior
of the ‘y’ output is represented by the equation
‘y=x2-x’ and the ‘x’ input is defined in the range
[-2,3], it is possible to derive that the output ‘y’ will
be defined in the range [-9,11] using interval
arithmetic [4]. However, if the output is defined by
the equivalent equation ‘y=x(x-1)’, the derived range
will be [-9,6]. Both approaches are overestimations of
the correct range, [-1/4,6].

In this paper, a modified interval analysis, which is
independent of the expression and has low
overestimation, is presented. This technique is used to
determine the input space values that verify certain
properties. These input values can be used as test
benches and/or counter-examples.

II. MODIFIED INTERVAL ANALYSIS

In our approach, we assume that the system is
described at system level as a set of statements that
operate with integer or real data. The addition,
subtraction and multiplication operators are supported
as well as ‘if’ control statements. Loop statements and
other operators (Boolean operations, division, etc) are
not currently supported.

At system level, the functionality can be
represented for polynomial functions. Let P(x1, x2, ...,
xN) be the polynomial that describes the behavior of a
system ‘S’ with a input space of N inputs (xI1 < x1 <
xS1, xI2 < x2 < xS2, …, xIN < xN < xSN ≡ XI<X<XS). The
inputs are positive. With negative inputs, a
displacement is proposed. In order to obtain a
maximum and minimum bound of this polynomial, it
is split in two polynomials: the increasing (P+(X)) and
the decreasing (P–(X)) polynomials. The increasing
polynomial is composed of positive monomials (terms
of the polynomial) and the decreasing polynomial by
negative monomials. P+(X) and P–(X) can be non-
linear functions, so they are bounded by two linear
functions (hyperplanes): upper (PA(X)) and lower
(PB(X)) bound hyperplanes. The addition of the
bounds of the monotonous polynomials provides a
hyperplanes that limit the polynomial P(X). From
these hyperplanes are obtained the range of values of
the P(X) in the input space.

III. SYSTEM-LEVEL VERIFICATION BASED ON

INTERVALS
Let ‘S’ be the system to verify. The objective is to verify

that certain properties are true or false in an input value
space (i.e. there is no overflow in operations, a special
control path is executed, an assertion is asserted, etc).

The system description includes control and data
statements as well as input assertions. The data statements
affect interval values and the control statements and
assertions are constraints that reduce the input value space.
The current version of the algorithm only considers
conditional control statements. In order to evaluate a
property, all the conditional statements of the path
between the inputs and the property have to be considered.
These conditions (or requirements) are transformed into
expressions of the form P(X) > 0, thus if the conditional
expression takes a value greater than 0 the requirement
will be satisfied. For example, the statement “if (x + y <
50) then” is transformed into “if (50 - x - y > 0) then” and
the input values ‘x = 10’, ‘y = 20’ satisfy the requirement
but the input values ‘x = 30’ and ‘y = 25’ do not.

Modified interval analysis is used to approach these
constraints. Thus, the output range sign will determine the
constraint satisfaction. The possible situations are: the
maximum value of the approximated requirement is less
than ‘0’ on case (a). This means that there is no input that
satisfies the requirement, therefore, the input value space
will not be considered during the rest of the analysis. Case
(c) occurs when the minimum value of the requirement
approximation is greater than ‘0’. This means that all the
inputs satisfy the requirement, thus this requirement is
eliminated for this input space. Case (b) is the default case,
in which the function could be positive and negative. In
this case, the algorithm calculates a heuristic parameter
(R) that measures the probability that the inputs generate a
positive function value.

Concerning the property under verification, it has to be
transformed into an expression of the form P(X) > ‘0’. For
example, if we want to verify that the output ‘z’ is never
greater than 255, the property will be defined as “z – 255
> 0”. If case (a) occurs (there is not any value greater than
0), the property will be satisfied in the input value space.
In case (b), an extreme point takes a value greater than ‘0’.
If this point satisfies all the requirements, we will find a
counter example that does not satisfy the property. In the
other case, more searches are needed. Only in this case, a
heuristic value (P) is calculated that indicates the
probability that there is a point in which the property is
greater than ‘0’.

The algorithm needs a cost function that guide the
search of the counter-example. It is functions of the
paramenters R and P, that estimate the existence of points
that complies the requirements and the property.

The verification algorithm is a depth-first-search
algorithm that explores the input value space. For a
particular input value interval, the algorithm determines
the hyperplanes that approximate the restrictions and
properties. If it is not possible to provide a conclusion
about the property satisfaction (case (c)), a new point
inside the input value interval is selected. This process will
generate several new intervals in which it is necessary to
evaluate requirements and properties. In order to
determine the interval in which the search will continue, a
cost function is defined.

The input space with the maximum “cost” is chosen and
it is split by the central point of the input space (the
median value of the range in each one of the inputs).
Again these zones are studied. The algorithm will finish if
a counter-example point is found or if there is no any input
space to study.

IV. CONCLUSIONS
In this paper we present a technique for property

verification in system level descriptions. The
technique is based on the modified interval analysis
method which is a better approximation than the
classical interval analysis. This interval analysis
technique is one of the main contributions of this
paper.

For verification, a first-depth-search based
algorithm is proposed. Only the basic arithmetic
operators and the control sentence “if-then-else” are
considered, but the potential for verifying a system
can be appreciated.

REFERENCES
[1] P. Sanchez, S. Dey, “Simulation-based system-

level verification using polynomials”,
HLDVT’99, November 1999.

[2] F. Fallah, S. Devadas, K. Keutzer, “Functional
Vector Generation for HDL Models Using Linear
Programming and Boolean Satisfiability”, IEEE
Trans. Computer-Aided Design, vol. 20, pp. 994-
1002, August 2001.

[3] Z. Zeng. P. Kalla, M. Ciesielski, “LPSAT: A
Unified Approach to RTL Satisfiability”, DATE-
2001, pp. 398-402, March 2001.

[4] R.E. Moore. Interval analysis. Prentice-Hall, 1966.
[5] J. Smith, G. De Micheli, “Polynomial Methods for

Component Matching and Verification”, Proc. of
the ICCAD’98 Conference. 1998.

[6] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, R.
Ernst, “Interval-Based Analysis of Software
Processes”, LCTES '2001, pages 94-101,
Snowbird, Utah, USA, June 2001.

[7] C. Huang, K. Cheng, “Assertion Checking by
Combined Word-level ATPG and Modular
Arithmetic Constraint-Solving Techniques”,
DAC 2000.

[8] T. Larrabee, “Efficient Generation of Test Patterns
Using Boolean Difference”, ITC 1989.

[9] A. Biere, A. Cimatti, E.M.Clarke, M. Fujita, Y.
Zhu, “Symbolic Model Checking using SAT
procedures instead of BDD”, DAC 1999.

