
 
 

 

  
Abstract— HW/SW co-simulation requires accurate timed 

simulation of the SW including the Real-Time Operating 
System (RTOS) used. One of the most important ways to 
simulate complex HW/SW systems is to use system-level 
languages. Among them, SystemC is widely accepted in the 
designer community. However, the use of SystemC does not 
directly support certain RTOS functionalities. RTOS modeling 
requires a sufficiently accurate estimation of the execution 
time. PERFidy provides such required timed simulation 
technology. This paper presents a method that can provide the 
designer with an accurate-enough, timed simulation of the 
embedded SW taking into account the RTOS behavior. The 
solution proposed is based on an accurate model of the RTOS 
with a precise simulation of the time-slicing. 
 

Index Terms—HdS, software refinement, SystemC, 
performance estimation, asynchronous events, RTOS 
modeling, HW/SW co-simulation. 
 

I. INTRODUCTION 
s predicted by the ITRS, nowadays SW development 
can represent nearly 80% of the total embedded 
system design cost [1]. When increasing integrated 

circuits complexity, several embedded processors and 
application-specific HW may be required. Complex Multi-
processor System on Chips (MPSoC) are used to implement 
complete embedded systems [2-3].   
    Ideally, the Hardware Abstraction Layer (HAL) should be 
enough to encapsulate the hardware dependencies and make 
the upper SW layers independent of the underlying HW, at 
least from the functional point of view. However, in real 
time embedded system design, software development is 
deeply dependent on the hardware platform that will support 
the software. In MPSoC, the HW drivers using RTOS 
functions and interfacing the application SW with the HW 
resources dilute any fixed border. Moreover, the real-time 
characteristics, specially timing ones, strongly depend on 
the HW platform, making any SW to be hardware 
dependent. All this code directly dependent on the 
underlying HW is called Hardware-dependent Software 
(HdS) [4].  
   As a consequence of this dependence, HW/SW co-
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simulation is an essential verification task in HW/SW co-
design. SystemC [5] has proven to be an adequate 
framework for HW/SW co-simulation [6-7]. 

Accurate SW simulation can be done using an 
Instruction-Set Simulator (ISS). This approach supports 
HW/SW co-simulation, integrating the ISS within the HW 
model [5]. Nevertheless, the ISS is very time consuming 
and, therefore, inapplicable when complexity increases. 

Fast SW simulation by abstracting the underlying HW 
has been proposed [6]. This approach requires a sufficiently 
accurate model of the RTOS and HdS. The most usual 
technique is to annotate the code with wait statements 
associated with the corresponding execution times [7-8]. 
The main disadvantage of this technique is lack of flexibility 
and inaccuracy of the RTOS modeling. 

In [9], a timed simulation technology called PERFidy was 
proposed able to dynamically estimate the execution time of 
a SystemC specification. The RTOS model was very simple 
as it was based on the channel access. The corresponding 
temporal behavior was modeled through the execution times 
of the HW/SW and SW/SW communication channels. 

In this paper, the PERFidy technology is improved with 
an accurate model of the RTOS. As the execution time is 
estimated dynamically, the proposed simulation technology 
is able to precisely simulate asynchronous events. Even the 
access to global variables can be adequately modeled and 
two different techniques are proposed. 

II. HDS MODELING 
One of the most important properties of embedded 

software is its close link to hardware. Critical properties of 
real time, embedded systems tend to be nonfunctional: 
timing constraints, fault recovery, power, security or 
robustness. They typically have to interact concurrently with 
multiple processes and must operate at the speed of their 
environment.  

Mapping to a specific architecture requires inserting all 
the layers from the application interface through the 
operating system, I/O subsystem, processors and hardware 
modules. Then, a large amount of custom software 
developed specifically to be executed over the platform 
hardware is needed to integrate these components.  

In this context, all software that is directly dependent on 
the underlying hardware is called hardware dependent 
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software (HdS). Thus, HdS can be considered the interface 
between hardware and software. Common examples of HdS 
are: 

• Hardware drivers. 

• RTOS Hardware abstraction layer (HAL). 

• Built-in tests (basic level offline tests). 

Hardware dependent software is not only an important 
cost factor but even more crucially for product 
competitiveness, because it has a dominant influence on 
performance, power consumption and safety. 

Thus, HdS design and implementation is becoming one of 
the most significant efforts in SoC design. At 
hardware/software interfaces, components developed in 
completely different ways and with very different models of 
computation have to be connected. Synchronization 
elements and timing characteristics of software and 
hardware components have to be combined.  

The timing characteristics of software components are 
strongly dependent on the RTOS because it defines the 
execution order of the different processes. However, this 
order cannot be completely predicted taking into account 
only the software elements. The hardware components and 
the environment can modify software execution with 
interruptions, or in blocking communications. Because of 
this, HdS modeling requires paying special attention to the 
effect of external events on RTOS and software execution. 

III. MODELING PREEMPTION IN SYSTEMC 
The RTOS plays an important role in embedded software. 

Priorities and scheduling policies are key elements to 
accomplish real-time requirements. Furthermore, it acts as a 
layer on top of which parts of the embedded software can be 
implemented relatively independent of the actual hardware 
platform.  

To adequately simulate the software in SystemC, a 
complete new library that allows the designer to model the 
platform RTOS is needed. The main features of this model 
can be divided into three groups. 

The first group is related to priorities and preemption 
capabilities. All embedded systems, except the simplest 
ones, need to assign different priorities to their processes to 
fulfill their temporal requirements. Furthermore, preemptive 
schedulers, which avoid priority inversions or processor 
monopolization, are used in most cases. Thus, the RTOS 
model has to provide a scheduling mechanism that allows 
the assignment of priorities to the processes and models 
these priorities in the SystemC simulation. This scheduler 
has to provide preemptive and non-preemptive mechanisms 
such as FIFO or Round-Robin scheduling policies. 

A way to implement this is to control which SystemC 
processes are declared ready in the SystemC kernel process 
list. SystemC runs each delta cycle every process that is not 
blocked. The solution is to maintain only one process 
unblocked for each microprocessor that the platform has. 
The new scheduler has to decide which process is 
unblocked and when, depending on the process priorities 
and the scheduling policy. 

The second group of features is composed of the 
synchronization and communication mechanisms. Mutexes 
and semaphores are required to synchronize threads and 
processes. To communicate threads, global variables can be 
used, but for processes more complex mechanisms are 
needed. Fifos, pipes and message queues can be developed 
to transfer data between processes. Global variables can also 
be used if the target RTOS has capabilities to share memory 
between processes.  

Furthermore, I/O communication mechanisms are needed. 
These elements are required for communications between 
microprocessors or with the hardware peripherals. 
Asynchronous events, such as POSIX signals, also have to 
be defined. 

Clocks and timers compose the last group of elements. In 
the context of RT/E systems, these elements are widely used 
in several scheduling techniques, such as RMA (Rate 
Monotonic Algorithm). Thus, their inclusion in the 
simulation environment is very important. 

This implementation of the RTOS model requires a 
temporal simulation, since timers or time slices cannot be 
modeled in an untimed one. A timed simulation can be 
obtained by adding timing parameters to the source code or 
by calculating these values dynamically during execution. 
The second option is more flexible, and thus, more suitable 
to model RTOS and HdS.  

Figure 1. Priorities and events 

    As commented previously, PREFidy was developed as an 
execution time estimation and timed simulation tool. As 
shown in figure 1, in PERFidy [9], the code of each process 
is divided into segments. Each segment is a piece of code 
that starts in a channel access and ends in the next channel 
access. The segment is executed in the simulation 
in zero time and in one delta cycle. At the same time, its 
estimated time is obtained. It is represented in figure 1 with 
small rectangles filled with the “code execution” pattern (in 
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fact they represent a zero time execution, so they should 
have no depth). Then, the estimated segment time is inserted 
in the simulation using a “wait” statement ( ).  

This method ensures the correct simulation of systems 
when non-preemptive schedulers are used. In this kind of 
schedulers, segments between synchronization points are 
executed without external interferences. However, when 
considering preemption, several mechanisms used in the 
design process, especially for the software refinement, do 
not fulfill these characteristics. This is the case presented in 
figure 1. This example represents an embedded system with 
two software tasks. Task 1 does the computation and Task 2 
does the I/O communication. For this communication, it 
uses a blocking function with a timeout. If the data is not 
provided before this timeout, the process is unblocked and 
the value is estimated using previous values. Then, Task 2 
loads the values in a global variable, and task 1 reads them. 
In this example, two values have to be obtained and 
reported to task 1. The first time, the datum does not arrive 
and the timeout is delivered, and the second time the 
external datum is provided. Futhermore, Task 2 has a higher 
priority than Task 1, so when Task 2 is ready to execute, 
Task 1 is preempted.   

In general, when a process unlocks a channel, the process 
that was blocked in that channel can be executed, and 
depending on their priorities, preemption can be carried out. 
This preemption can be simulated analyzing the priority of 
the process unblocked, and deciding which process has to 
continue. However, when a timeout is delivered, if the 
priority of the process that is awoken is higher than the 
priority of the process that is running at that moment, the 
segment under execution has to be stopped. 

However, the method of estimation and simulation 
presented above does not allow this. The segment is 
completely executed in zero time and the temporal cost is 
mapped in one step, so intermediate interactions are not 
possible (for example, at T=55us in figure 1). 

This means that when the interaction is computed, the 
segment execution has been done and cannot be modified. 
Thus, if a global variable is used by both tasks, functional 
results can also be wrong. If a process is in charge of 
writing the variable and another process uses these values, 
the accuracy of the temporal point and, thus, the order in 
which the accesses are done can be critical. This fact implies 
that this method cannot simulate the management of 
communication mechanisms that have no synchronization 
capabilities, such as global variables. For this reason, global 
variables are not allowed in this kind of models. However, 
this restriction can be valid at the system specification level, 
but may be too restrictive when developing the final 
software. 

For instance, if we have to model a peripheral (e.g. a 
speedometer) and we are going to develop the driver, this 
problem can appear. It is usual that the peripheral has to be 
accessed by polling a pointer that provides the peripheral 
data. Thus, each time the value provided is taken, the 
current segment is not finished. If the program works with 
some values obtained from the speedometer in the same 
segment (with multiple pollingin the same delta cycle), 
every polling will report the same value. This means that 

there is no way to make a correct test of the system 
(peripheral and driver). 

Therefore, in these cases, the execution order is not 
correct. To solve this problem, the code of the task that has 
to manage the intermediate interaction is always executed 
when the current task has a smaller priority. To minimize 
the problem, the time of the preemption is added to the first 
task at the end of the segment( ), and thus, the 
simulation partially solves the problem (see figure 1). The 
interactions of the second task with the rest of the system 
will be done at the correct time, but for the interaction with 
the first process of the example, the result is the same as 
executing the second segment of task 2 at the end of task 1. 

Summarizing, neither priority management nor 
asynchronous events, such as interruptions, can be 
considered. The proposed methodology for system design 
specifies that every communication needs to be 
synchronized. However, throughout the refinement process, 
especially for the software flow, this can be too restrictive. 
Thus, the methodology has to evolve to accept these 
elements. 

 The first step to present the solution proposed is to 
discuss the elements that can be used in the component 
implementations and that will produce errors in the 
simulation when using the technology presented above. 
These errors can appear when a process, which was 
blocked, is unblocked. The simulator will work correctly if 
this is caused by an operation done in a channel by the 
process running in the same processor at that moment. This 
process will detect that another process is ready, and then 
the decision of which one has to continue can be taken. 
However, if this process is not the one which awakes the 
blocked process, it cannot be solved and new techniques are 
required. 

Software timers and alarms can induce a process to pass 
to the ready state independently of the actions of the running 
process. They cannot be simulated with the previous 
technique, but they can be modeled taking into account their 
predictability. When the timer is set, it is well known when 
it will be delivered. Thus, when a segment is simulated the 
preemption can be predicted. The time estimation of the 
segment is calculated dynamically, so the process execution 
can be stopped at the exact point when the timer will awake. 

However, when the process is awoken by an external 
event, it cannot be modeled in that way. For example, these 
events can be interruptions or receptions of values in 
blocking channels. In this case, the event is unpredictable 
when the segment starts, so the execution cannot be stopped 
at the right time. 

IV. ACCURATE MODELING OF GLOBAL VARIABLES 
The analysis of the current method of simulation 

presented above shows that modeling preemption in timed 
simulations with segment time estimations could produce 
incorrect results. This problem can be tackled in two 
different ways. On the one hand, it can be interesting to try 
to obtain a process simulation order as close as possible to 
the real implementation. On the other hand, we can only 
ensure data coherency to obtain correct functional results. 
Thus, we only have to guarantee that read and write 



 
 

 

accesses to asynchronous communication mechanisms (such 
as global variables) are done in the right temporal order. 

Summarizint the ideas presented in Section III, the 
problem occurs because the segment code is executed in 
zero time at the beginning of the segment and, afterwards, 
the estimation of their temporal cost is applied to the 
simulation using a wait statement. Thus, certain events 
(timers or I/O data) that are received during segment 
executions in the real implementation are executed in 
parallel with the wait statement in the simulation. This 
means that the part of the segment, which should be 
executed after the event, has already been executed. Thus, if 
the response to the event modifies the values of the 
variables used by the segment that was previously executed, 
this simulation may be wrong. 

The first option is to reduce the part of the segment 
executed that should be run before the event arrival. The 
second option avoids the problem because the segment does 
not use any variable that could be modified by the event 
response. Just before these shared variables are accessed, 
the current segment ends and a new one starts with this 
access. This method allows the execution of the event 
handler between these two segments and, thus, the value of 
the variable is correct when used. 

These two options can be explained with the example in 
figure 1. Figure 2 shows the real order of execution of the 
two-process code, the result os simulating with the standard 
model and the possible solutions. 
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Figure 2. Communication using a global variable. 

In the real implementation, task 1(T1) starts its execution 
at t=0us and task 2(T2) is waiting for a timer. The timer is 
released at t=20us. Then, T1 is preempted and T2 is 
executed, writing in the variable. After that, T2 is blocked 
waiting for a new I/O datum. Then, T1 runs again, and reads 
the value of the global variable. At t=55us the external 
datum is provided, T1 is preempted and T2 continues its 
execution.  T2 writes the new value in the variable and 
finishes. Finally, T1 reads it for a second time and the 
example ends. 

If the previous simulation model is used, T1 starts the 

segment execution at t = 0 ns and finishes at t = 60 us. The 
segment is completely simulated at the beginning and then 
the wait statement is executed. Thus, T2 is not actually 
executed until the segment finishes, so the two interruptions 
are evaluated at t= 60 us and t = 80 us. The variable is read 
before the values are stored, so the execution is wrong. 
Furthermore, the two accesses always obtain the same 
value, so the process execution cannot be verified because 
the test bench cannot provide two different values to T1. 

The first solution presented obtains an execution trace 
which is as realistic as possible. To do this, we verify each 
10 us if there has been an event. Thus, at t=20us the timer 
expiration is detected, and at t = 60us the external data 
arrival is captured. Then, T2 executes correctly the first time 
and nearly the second time. Thus, the functional result is 
correct and the temporal error is very low. 

The second solution is to ensure the coherence in the 
values that are read and written in the variable. This causes 
the process to be running until t = 35 us. At this time, the 
variable has to be read, but it is detected that an interruption 
has been raised. Thus, T2 is executed before the datum is 
obtained. It is repeated at t = 75us. With this method, the 
result is also correct. 

Once the two points of view from where the problem can 
be tackled has been presented, their implementations, 
advantages and disadvantages will be discussed. 

The first approach is based on dividing each segment into 
several segments to reduce the code executed before event 
management. For this, a maximum value is defined for the 
temporal cost of the segments. Then if a segment requires a 
longer time, it is divided into segments of equal or less 
duration than the maximum value. This technique ensures 
that the code executed in the wrong order is limited by a 
known and adaptable value, and the errors that can appear 
are minimized. 

This solution produces a very flexible interval-slicing 
technique. The maximum interval can vary from a very 
large interval to a very short one. If the interval is close to 
the time estimation of the largest segment, the simulation is 
modified slightly. Only very large segments, where errors 
are more probable, are divided. This means that the 
simulation overhead is reduced to a minimum value. 

If the interval is less than or equal to the temporal cost of 
the source code basic operations, the simulation is 
completely modified. The segment concept disappears and 
each operation is executed in the same simulation time as in 
the real implementation. Thus, the simulation is very exact 
and no errors in the execution order can occur. However the 
simulation overhead is very high. Summarizing, the 
definition of a maximum interval defines the granularity of 
the simulation. 

Apart from the reduction of the error, this method 
produces execution diagrams that are very close to reality. It 
also presents three advantages. It is a completely automatic 
technique. No changes have to be made in the software 
code. The technique is very flexible, because it is very easy 
to adapt the simulation to the desired accurate-overhead 
factor. This method also supports the change of the 
granularity during the simulation. 

However, this method presents two disadvantages. First, 



 
 

 

it produces an important overhead of the simulation time. 
The limitation of the maximum segment time means that 
those segments larger than the limit are subdivided, and 
thus, the number of segments is increased. Between the end 
of a segment and the beginning of the next one, the 
SystemC kernel is executed, and it takes an important time. 
If the number of segments is increased, the number of 
kernel executions is higher too and the simulation time 
increases. Thus, this overhead is proportional to the segment 
limit value, and better simulations require longer times. 

Figure 3. Time-slicing technique 

The other disadvantage is more critical. This method does 
not ensure the coherence in the variable values. The 
segment limitation reduces the probability of the inversion 
of read and writes accesses, but it does not always eliminate 
the problem. Depending on the value of the time segment 
limit, the simulation can be correct or not. 

To ensure the correct access order to the variable, the 
other method presented at the beginning of the section is 
needed. This method obliges the simulation to end the 
segments before accessing the global variables. Then, the 
occurrence of an external event is checked, and, in that case, 
the preemption can be simulated, and the preempted process 
does not read the variable until the event reaction has 
finished. This means that the variable could be written 
before the read access is done. Thus the simulation is 
correct. However, the similarity of the task simulation flow 
and the real execution times may not be as good as in the 
previous method. 

To implement this method, two possibilities are proposed. 
The first one is to define a mark that has to be inserted in 

the source code to enforce the end of the segments where 
global variables are used. Placing this mark just before the 
accesses, the communication points that are not 
synchronized can be correctly modeled. 

This technique presents the disadvantage that the mark 

has to be placed every time an asynchronous 
communication is done. This need can cause coding errors 
because it is easy to forget to introduce a mark. Because of 
this, the technique is not completely satisfactory. However it 
can be useful to ensure the correct simulation of critical 
points of the code, providing an alternative to the first 
solution presented. Using this method, not all simulation is 
adapted to the required granularity, limiting the maximum 
errors in the time the tasks are executed, however, if only a 
few critical points are actually interesting for this timing 
analysis, it is a better solution. Furthermore, this method 
increases the simulation time significantly. 

The second option is the redefinition of these global 
variables as a new kind of channels. Then, every channel 
access can be done in the correct time. Furthermore, this 
solution guarantees the support of the orthogonality of 
communication and functionality, with the advantages that 
this provides. The technique completely solves the problem 
of the coherence of global variable values with minimum 
modifications in the source code and without a notable 
simulation overhead. 

To implement this, a new channel has to be provided. 
This channel has the same behavior as a common variable, 
but every read and write access makes the current segment 
finish and the time is annotated. Thus, the access is done at 
the beginning of a new segment, and therefore, in the exact 
temporal point. 

 
Solution 1: 

Handler: 
... 
PLACE_IN_TIME 
glob_var = *(int*)0x1000;
… 

Process: 
... 
PLACE_IN_TIME 
local_var=glob_var; 
… 

Global code: 
int  glob_var; 

Solution 2: 

Handler: 
... 
glob_var = *(int *)0x1000;
… 

Process: 
... 
local_var=glob_var; 
… 

Global code: 
GLOBAL_VAR(glob_var)

 
Figure 4. Global variable management. 

With these three solutions the problem of modeling 
asynchronous events in software components with priorities 
and preemption scheduling is solved. These solutions are 
independent of the method used to implement the model of 
the rest of characteristics of the environment where the 
components will be executed. 

V. RESULTS 
These three solutions have been implemented in 

PERFidy[9], and the results obtained are as expected. About 
functionality, the use of the solutions proposed, specially the 
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last one, avoids all problems caused by the use of non-
synchronized communication.   

The most important numerical result obtained in this 
work is the relationship between the maximum segment 
time defined in the first solution and the overhead in the 
simulation time. 

To obtain this, a model of a GSM coder[11] described in 
SystemC has been used. From this example, and once the 
suitable platform parameters are applied to the library, the 
average value of the segment times has been found to be of 
the order of hundreds of nanoseconds. The longest segments 
are of the order of some milliseconds. 

Therefore, to obtain good results, interval limits from 100 
ms to 10 ns have to be tested. This range will analyze the 
overhead form the case where no segments are subdivided 
to the case where all segments are modified. The following 
results have been obtained: 

 
Time-slice Simulation Time 

Original PERFidy 1.45 sec 
100ms 1.52 sec 
1 ms 1.68 sec 
10us 2.47 sec 
1us 10.89 sec 

100ns 74 sec 

Table 1: Time-slice interval vs simulation time. 

This result shows that the time increment increases 
exponentially. This is because the segment time distribution 
is also exponential. This result confirms that this is not the 
most suitable way to obtain the coherency in asynchronous 
communication, because this requires very short segments 
and then the simulation is very slow. However, it will be 
useful to obtain better execution graphs, because the most 
important errors are in the longest segments, and these can 
be estimated more accurately with minimum overhead. 

The comparation of time cost between PERFidy 
simulation and other simulation mechanisms has been 
presented in [9]. However, the comparation of the effect of 
the mechanisms presented in this paper with other models is 
difficult because preemption is usually not supported in that 
way. 

VI. CONCLUSION 
In the development of real-time, embedded systems 

(RT/E), the close relationship between hardware and 
software necessitates the use of design methodologies where 
systems can be developed as a whole, especially for 
hardware dependent software (HdS). 

The platform where the system will be implemented has 
to be adequately modeled to obtain an optimum design. 
Thus, both timing estimation techniques and modeling 
operating system features are key elements for software 
component development.  

Mechanisms provided by SystemC are suitable for 
specification and hardware development steps, however, for 
software refinement, there is a lack of features that has to be 
overcome. 

In this context, modeling priorities and other scheduling 

characteristics, such as preemption, at the same time as 
temporal simulations based on segment techniques are used, 
requires an accurate modeling of the events that are 
unpredictable before the simulation starts. 

In this paper, asynchronous events have been suitably 
handled, independently of the method used to model 
priorities or temporal costs. 

One technique is based on the definition of a maximum 
interval of time for code blocks that are analyzed as a single 
element. This technique is useful to obtain timing analysis 
of task flows, but not to ensure the coherence of global 
variables. Furthermore, when the time limit is reduced, the 
simulation overhead is very important. 

To guarantee the correct use of asynchronous 
communications, another two methods are proposed. The 
first one is based on the manual insertion of marks that 
oblige executing the accesses at the correct time. This 
technique has the disadvantage that many code 
modifications can be needed, and thus it is error prone. 
However, it can also be used as a complement to the first 
technique. 

The last technique is based on the identification of this 
global variables and their redefinition as channels. This 
method is more effective than the previous one and ensures 
the coherency of values with a minimum overhead. 
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