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Abstract— Verification has become an essential aspect of 
design flow because of the increasing design complexity. 
According to the latest report of the International Technology 
Roadmap for Semiconductor, the challenge will be to develop 
new design-for-verifiability techniques and verification 
methods for higher levels of abstraction. Several Design-for-
Verifiability methodologies (DFV) have been proposed and 
Assertion-based Verification (ABV) is one of the most 
promising. In order to automatically verify assertions at the 
higher abstraction levels, it is necessary to improve the 
performance and capabilities of current constraint solvers. 

This paper presents a new technique based on non-linear 
solvers that automatically checks assertions in behavioral 
descriptions of hardware systems. 

 The main contribution of this work is the definition of a 
methodology that allows using continuous non-linear solvers to 
verify behavioral descriptions. These descriptions are modeled 
with a set of integer polynomial inequalities.  The technique 
provides better results than integer solvers and it is applied to 
real designs, such as Viterbi decoders or vocoder digital filters. 
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linear solvers. 
 

I. INTRODUCTION 
erification has become the main bottleneck of the 

design flow as a result of two processes. Firstly, the 
functional complexity of modern designs is continuously 
growing. Secondly, the greater emphasis on other aspects of 
the design process has produced important progress 
(automated tools for logic synthesis, place-and-route, etc), 
leaving verification as the main bottleneck that will be a 
barrier to further progress in the semiconductor industry if 
there is not a major breakthrough (2004 report of the 
International Technology Roadmap for Semiconductors 
[1]). 

Formal verification techniques are beginning to gain 
acceptance and they sometimes complement simulation 
methods in the process of verification. The main goal of 
formal hardware verification is to prove the functional 
correctness of a design instead of simulating some vectors.  
Traditionally, formal techniques are classified into three 
groups: equivalence checking, model checking and theorem 
proving technique. Most of these methodologies use 
Boolean equations to model some aspects of the design. 

Popular techniques to solve these Boolean equation 
systems (or satisfiability problems) are based on Binary 
Decision Diagrams (BDD) [2]. BDDs are used to represent 
binary output value constraints in a canonical form. The 
main disadvantage of the use of BDDs is the “memory 
explosion” problem because of the huge size of the diagram 

even for medium complexity design. Several optimizations 
have been proposed to compress the diagram (OBDD, 
ROBDD, etc). 

Another way to solve Boolean equations is to use a SAT 
solver. This technique avoids the exponential space blow-up 
of BDD [3]. The main drawback is the handing of 
arithmetic operators. These operators are transformed into a 
large number of Boolean formulas which reduce the SAT 
efficiency and limit its application domain. To overcome 
these disadvantages, hybrid satisfiability approaches, such 
as HSAT [4], have been proposed. The goal is to combine a 
SAT and a linear programming solver. The SAT checker is 
used to solve the logic equations and the linear 
programming solver is used to check the feasibility of the 
arithmetic equations. These two engines operate in separate 
domains. The performance of HSAT is limited by the 
heuristics that choose the set of assignments to Boolean 
variables. Other similar approaches (e.g. LPSAT [5]) are 
based on mixed integer linear programming (MILP) 
techniques [5]. However, general ILP solvers tend to be 
inefficient in solving real satisfiability problems. Firstly, 
they do not directly handle nonlinear operators (multipliers). 
Secondly, they have numerical convergence problems, and 
they are sensitive to a number of internal parameters. Other 
tools are based on Constraint Logic Programming (CLP) 
techniques [6]. The CLP works at Boolean level and/or 
Integer domain and it has similar problems to MILP 
techniques. 

This paper presents a different approach to the 
verification of designs that are modeled with Boolean 
equations and/or non-linear expressions. The technique is 
based on a commercial global non-linear solver. The goal of 
this type of solver is maximizing a non-linear equation (the 
assertion equation in this paper) while satisfying a set of 
non-linear constraints that model conditional statements and 
discontinuous functions in this work. The commercial solver 
LINDO [7] is an example of a global non-linear solver and 
it has been used in this work. It has an Application 
Programming Interface (LINDO API) that has been 
designed to solve a wide range of optimization problems, 
including linear programs, mixed integer programs and 
general nonlinear non-convex programs. The global 
optimizer of LINDO API uses branching to split the feasible 
region into subregions and bounding to obtain a valid bound 
on the optimal objective value in each region. This type of 
solvers has problems with integer equation systems because 
integer variables introduce non-smooth problems, thus 
memory and solution time may rise exponentially with 
them.  
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In order to avoid this problem, the proposed verification 
methodology uses the non-linear solver in the real domain 
(maximum efficiency and minimum CPU time and memory 
requirements) and defines a new technique to find integer 
solutions from the real-domain solver results. The main 
advantages of the proposed verification techniques are the 
efficient handling of non-linear systems and the relatively 
low CPU requirements.  

 

II. SYSTEM MODELING 
In this paper the hardware system is described at 

behavioral level as a set of concurrent processes. The 
proposed verification technique is focused on individual 
process validation, thus only one process will be considered. 
This process is suspended in an initial wait statement until 
the input values change. After this, the process body is 
executed until the initial statement (wait statement) is 
reached. Figure 1 shows this behavior. The straight arrows 
model the external inputs (Xi) and the outputs (Zi). The gray 
box represents the ‘wait’ statement and the dashed line the 
memories or state variables (Ii). The dotted lines represent 
the execution paths (functionality) of the process.  

 
 

 X1 X2 X3 

Z1

I1 

 
Fig. 1. System Model. 

 
The model includes integer variables and the directly 

supported operators are addition, subtraction, multiplication, 
and relational. Other operators have to be transformed into 
equivalent polynomial equation systems. For example, the 
modulus operation (D%N) is transformed into the following 
integer equation system:   
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It is assumed that all the previous equations take integer 
values. 

Other operators (e.g. bit selection, bit-wise logic operator, 
etc) are transformed in a similar way.  

Word-level logic operators (e.g. “or reduce”) and bit-level 
logic operations are transformed into integer polynomials. 
For example, the logic equation “a = b or c” is transformed 

into “a = b + c - (b*c). 
Concerning control statements, conditional ‘if’ statements 

are totally supported. Every conditional statement is 
transformed into a two-equation system (see figure 2). A 
new variable (K) identifies the selected path. This integer 
control variable takes values in the range [0, 1]. When the 
variable takes the value ‘1’, the ‘true’ path is activated 
(C=f1). When the variable takes the value ‘0’, the ‘false’ 
path is chosen (C=f2).  

 

if(A > B) then 
         C = f1; 
else 
         C = f2; 
end if; 

 
K *(A – B) + (1-K)*(B – A + 1) > 0 
 
C = K*f1+ (1 – K)*f2; 
K ∈ [0, 1] 

 

Fig. 2. Model of the conditional statement. 
 
Finally, the loop operators are handled with restrictions. 

The ‘for’ loops are totally unrolled when the number of 
iterations can be statically determined. Figure 3 shows an 
example. During the unrolling process, several variable 
assignations are modified. For example, the ‘x’ and ‘y’ 
variables of figure 3 change in every iteration, thus new 
variables (x1,…,x4, y1,…,y4) are defined to model the 
intermediate values. Additionally, only the last iteration 
output assignments are translated (r variable in figure 3).  

 

for(i = 0; i < 4; i++) 
        x = y + 5; 
        y = x + z; 
        r = y*z; 
end for; 

x1 = y + 5; 
y1 = x1 + z; 
x2 = y1 + 5; 
y2 = x2 + z; 
x3 = y2 + 5; 
y3 = x3 + z; 
x4 = y3 + 5; 
y4 = x4 + z; 
r    = y4*z; 

 

Fig. 3. Model of the for statement. 
 

The ‘while’ loops cannot normally be totally unrolled 
because it is not possible to statically determine the number 
of iterations. In this case, the algorithm will unroll a new 
iteration in every step. This means that the algorithm will 
unroll one iteration in the first step, two in the second and it 
will repeat the process up to a user-defined maximum 
number of iterations. If several ‘while’ loops are nested, the 
number of unrolled statements will grow exponentially.  

With the previously commented transformation, the 
process body (dotted line in figure 1) will be modeled with 
polynomials whose input space will change in every process 
execution. The assertion to be checked and the conditional 
statements will be modeled with polynomial inequalities.  

  

III. SYSTEM MODELING EXAMPLE 
In this section, the generation of the polynomial model of 

a typical communication system component (a Viterbi 
decoder) is presented. This set of polynomial equations can 



 
 

 

be solved by the LINDO API package. The Viterbi decoder 
is a common component of forward-error-correction (FEC) 
modules. 

Typically, a Viterbi decoder algorithm has four steps [8]: 
determine branch metrics, accumulate path distances, 
normalize path distances and determine the survivor path 
with a trace back algorithm that extracts the decoded 
symbols.  

A simple Viterbi decoder will be presented in this section. 
It receives two inputs (x and y) whose probabilities of 
taking value ‘1’ (or likelihood) are represented by a value in 
the range [0,255]. The Trellis diagram will only have 4 
nodes in each slice, thus only 8 branches are possible. 
Figure 4 presents the behavioral description of the branch 
metric calculation (first step of one iteration of the Viterbi 
decoder) on the left. On the right, the figure presents the 
equivalent polynomial model of the system 

 
M0 = x + y; 
M1 = x + (255 – y); 
M2 = (255 – x) + y; 
M3 = (255 – x ) + (255 – y); 

x + y – M0 = 0; 
255 + x – y – M1 = 0; 
255 – x + y – M2 = 0; 
510 – x – y – M3 = 0; 

 

Fig. 4. Model of first part of the Viterbi decoder algorithm. 
 
Figure 5 presents the behavioral description of the second 

step of the Viterbi algorithm (accumulate path distance) on 
the top. On the bottom, it presents the set of polynomial 
equations that models it. The ‘for’ loop has been totally 
unrolled and the conditional statements have been converted 
into polynomial inequalities. 

Other steps of the Viterbi algorithm are transformed in a 
similar way. As a conclusion, an iteration of the Viterbi 
decoder with two inputs and four Trellis nodes is 
transformed into a set of 28 polynomial restrictions (or 
inequalities) and 32 internal variables. 

 

IV. VERIFICATION METHODOLOGY 
The goal of the proposed verification technique is to find 

a point that fulfills the set of integer inequalities that model 
the hardware system and violates an assertion. Three steps 
have been defined (figure 6): 

 
1.- Polynomial model generation 
The behavioral description is transformed into an 

inequality system that can be handled mathematically. In 
order to reduce the complexity of the problem, the 
discontinuous functions (conditional statements, round 
operators,…) are transformed into a series of expressions 
with a collection of additional variables and constraints (see 
section II). Integer variables are also transformed into real 
variables, although they are not mathematically equivalent 
(non-linear problem relaxation). These modifications allow 
the use of an efficient non-linear solver based on function 
derivatives. 

 
2.- Solve the inequalities system 
A non-linear solver is used to find a solution in the real 

domain. If there is a real solution, an algorithm that finds an 

integer solution has to be applied (step 3). If there is no real 
solution and the input description has “while” statements, a 
new iteration of a ‘while’ loop will be added to the 
polynomial system description before executing step 2 
again. In order to limit this unrolling process, the user 
defines the maximum number of iterations that a ‘while’ 
loop can be unrolled. If there is no real solution and the 
loop-unrolling limit is reached, the system cannot have an 
integer solution, thus the system will fulfill the assertions 
until the pre-defined unroll limit. 

 
for ( J=0; J < 3; J++) { 
       switch (J) { 
              case 0:  
                     upper_branch_distance(J) := M0 + current_distance(0);   
                     lower_branch_distance(J) := M3 + current_distance(2); 
                     break;  
              case 1: 
                     upper_branch_distance(J) := M3 + current_distance(0);  
                     lower_branch_distance(J) := M0 + current_distance(2);  
                     break;  
              case 2: 
                     upper_branch_distance(J) := M1 + current_distance(1);   
                     lower_branch_distance(J) := M2 + current_distance(3);   
                     break;  
              case 3:  
                     upper_branch_distance(J) := M2 + current_distance(1);   
                     lower_branch_distance(J) := M1 + current_distance(3);   
                     break;  
        }; 
        if(upper_branch_distance(J) <= lower_branch_distance(J)) 
              new_distance(J) := upper_branch_distance(J); 
        else 
              new_distance(J) := lower_branch_distance(J); 
}; 

-- Modeling of ‘for’ sentences 
// J = 0 
M0 + current_distance0 –  upper_branch_distance0 = 0; 
M3 + current_distance2 – lower_branch_distance0 = 0; 
K0*(l_b_d0 - u_b_d0) + (1 – K0)*(u_b_d0 - l _b_d0) > 0; 
K0*l_b_d0 + (1 – K0)*u_b_d0 - new_distance0 = 0; 
// J = 1 
M3 + current_distance0 –  upper _branch_distance1 = 0; 
M0 + current_distance2 –  lower_branch_distance1 = 0; 
K1*(l_b_d1 - u_b_d1) + (1 – K1)*(u_b_d1 - l _b_d1) > 0; 
K1*l_b_d1 + (1 – K1)*u_b_d1 - new_distance1 = 0; 
// J = 2 
M1 + current_distance1 –  upper _branch_distance2 = 0; 
M2 + current_distance3 –  lower_branch_distance2 = 0; 
K2*(l_b_d2 - u_b_d2) + (1 – K2)*(u_b_d2 - l _b_d2) > 0; 
K2*l_b_d2 + (1 – K2)*u_b_d2 - new_distance2 = 0; 
// J = 3 
M2 + current_distance1 –  upper _branch_distance3 = 0; 
M1 + current_distance3 –  lower_branch_distance3 = 0; 
K3*(l_b_d3 - u_b_d3) + (1 – K3)*(u_b_d3 - l _b_d3) > 0; 
K3*l_b_d3 + (1 – K3)*u_b_d3 - new_distance3 = 0; 

 

Fig. 5. Model of second part of the Viterbi decoder algorithm. 
 
The solver provides partial results of the inequality 

system solution. If one of these partial results violates the 
assertion and fulfils the inequalities, the solver will be 
aborted and the partial solution will be used as a possible 
counterexample. The goal of the solver is to find the point 
that maximizes the equations. Our goal is to find a point that 
fulfils them, thus the solver is aborted as soon as a partial 
solution is detected with an important reduction of the 
solver execution time. 
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Fig. 6. Verification Methodology. 
 
 
3.- Derive an integer solution from the real solution 
The goal is to find an integer solution taking into account 

the information that the real-domain solution provides. The 
technique defines two steps: variable rounding and branch-
and-bound exploration of the solution space.  

The first step is to round the real variables to the closest 
integer value. If there are 2 possible values (for example, 
11.50 could be rounded to 11 or 12), a value will be 
randomly selected. Figure 9 presents the decisions that the 
integer-solution searcher algorithm takes with the figure 7 
example. In this figure, the type uint8 models an integer 
with range 0 to 255. The ‘space3’ assertion verifies that the 
‘ret’ variable is never greater than 340. In figure 9, the 
ranges of the inputs are included in ellipses. The rectangular 
forms contain the solutions that the solver provides in the 
real domain and the hexagonal forms, the rounded integer 
points. 
 

 

void space3 (uint8 x, uint8 y, uint8 z) 
{ 
      int temp, dat, ret; 
 

      dat = (x – 110)2 – (y – 28)2; 
      temp = dat – (z – 170)2; 
      if (10000 > temp) 
            if (6*y – 2*x – 4*z > 0) 
                  ret = x + y + z;       
      else 
            ret = 0;       
      ….  
      Assertion  ret ≤ 340; 

} 
 

Fig. 7. ‘Space3’ example. 
 

The non-linear solver provides a first solution (x=95.434, 
y=118.148 and z=129.255) that is rounded by the searcher 
algorithm (top hexagonal form) to an infeasible solution (the 
assertion is not violated or the inequalities are not fulfilled 
with the top hexagonal form values).  

In this case, the second step (branch-and-bound based 
exploration) is applied. Firstly the farthest value from an 
integer is selected. In Figure 9, the farthest value is 95.434, 
thus variable x is selected. Secondly, the input space of the 
selected variable is split into two parts: values greater than 
the integer part (x>95) of the solution and values less than 
or equal to the integer part (x<=95). This generates two new 
set of polynomial inequalities. These sets are solved with 
the non-linear solver, thus two new set of solutions and 
maximum values of the assertion can be generated. If a new 
set has no solution, its branch will be removed. The 
algorithm will select the set that produces a higher assertion 
value and it will repeat the searching process. This process 
will be finished in a branch if one of these conditions is 
verified: 

 
1.- The solver cannot find a solution, thus the problem is 

infeasible. 
2.- The solver provides a solution, but the assertion is 

always verified. 
 
In these cases, the current branch will be removed and the 

last unselected branch will be selected. This process is 
repeated until a counterexample is found or all the branches 
are removed (the assertion is always fulfilled). 
 

V. EXPERIMENTAL RESULTS 
 In order to validate the proposed technique, two 

examples at behavioral level have been proposed. The first 
example is the ‘Pre_Process’ module of the GSM standard 
(ETSI EN 301.245, December 1997). This module is a 
second order high pass IIR digital filter with cut off 
frequency at 80 Hz and 4 taps. Two assertions have been 
inserted into the code. The first assertion verifies that the 
accumulated values are not saturated. The second assertion 
checks if the accumulated values are again saturated after a 
previous saturation. 

The second example is the previously commented Viterbi 
decoder algorithm. It is a soft decoder with a rate of ½, a 
constraint length of 3 and a survivor window length of 16. 
The inserted assertion checks if there is overflow in the 
maximum value of the path metric accumulator  

The CPU times in Table III correspond to seconds on a 
Pentium IV with 2 GB of RAM at 2.8 GHz under Windows 
XP.  

Table I shows the results of the verification of the first 
assertion of the GSM filter. The first column shows the 
number of execution of the process, the second column is 
the number of the inputs. The range of the inputs is [-32768, 
32767]. The third and fourth columns are the number of 
integer variables and restrictions that model the behavioral 
description. The last column is the time, in seconds, that the 
proposed algorithm takes to obtain a result. During the first 
21 iterations, the filter values are not saturated and the 



 
 

 

assertion is verified. In the 22nd-iteration, a counter example 
is found.   

TABLE I 
RESULT OF THE FIRST ASSERTION OF THE FILTER. 

Iteration #input
s 

#variable
s #restrictions Time 

1 1 3 4 0 
2 2 10 8 0 
3 3 18 15 0 
4 4 26 22 0 
5 5 34 29 0 
6 6 42 36 0 
7 7 50 43 1 
8 8 58 50 0 
9 9 66 57 0 

10 10 74 64 0 
11 11 82 71 0 
12 12 90 78 12 
13 13 98 85 8 
14 14 106 92 2 
15 15 114 99 40 
16 16 122 106 38 
17 17 130 113 30 
18 18 138 120 64 
19 19 146 127 74 
20 20 154 134 66 
21 21 162 141 133 
22 22 170 148 21 

 
The other assertion checks the second saturation after the 

first one (22 nd –iteration). The proposed methodology has 
found a second overflow at the 35th-iteration. It is 
interesting to analyze the evolution of the execution time of 
the non-linear solver (figure 8). Due to the heuristic 
algorithms that the solver uses, the execution time does not 
have a “common pattern” and it is very different for close 
problems. For example, the solver takes more than 9000 
seconds to find a solution in iteration 33 but it only needs 33 
seconds to solve iteration 34.  
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Fig. 8. Result of the Second Assertion of the filter.  
 

The results of the Viterbi verification are shown in table 
II. In this case, the algorithm always fulfills the assertion. 
Some variables have been added to model the control 
statements.  

In order to evaluate the methodology, the proposed 
examples have been checked with a commercial integer 

non-linear solver. This solver provides solution for only 2 
iterations of the GSM filter and it is not able to solve an 
iteration of the Viterbi decoder.  

 
TABLE II 

RESULT OF THE ASSERTION OF THE VITERBI DECODER. 
Iteration #inputs #variables #restrictions Time 

1 2 32 28 0 
2 4 65 58 0 
3 6 98 88 1 
4 8 131 118 1 
5 10 164 148 2 
6 12 197 178 3 
7 14 230 208 4 
8 16 263 238 5 
9 18 296 268 7 
10 20 329 298 8 
11 22 362 328 10 
12 24 395 358 11 
13 26 428 388 14 
14 28 461 418 16 
15 30 494 448 19 
16 32 527 478 21 

  

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, a method to check assertions at behavioral 

level is presented. The behavioral description is transformed 
into a set of polynomial inequalities. The proposed 
methodology is able to derive an integer solution 
(counterexample) for this inequality set. The technique is 
based on a commercial non-linear solver that provides a 
real-domain solution that is used to find an integer solution 
of the problem. The proposed methodology is able to handle 
efficiently complex descriptions that cannot be directly 
checked with integer non-linear solver. 

The future work includes the automatic generation of the 
polynomial inequality set from high-level HDL (for 
example, SystemC) and the extension of this technique to 
concurrent descriptions. 
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Fig. 9. Steps of the algorithm to find the integer solution in the ‘space3’ example. 
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