
 
 

 

  

Abstract— In order to confront the verification of more and 
more complex Systems, several Design-for-Verification 
methodologies (DFV) have been proposed. One of them, 
Assertion-based Verification (ABV) has recently emerged as 
the functional verification methodology capable of keeping 
pace with increasingly complex systems.  

This paper presents an ABV technique that automatically 
searches for counter-examples that violate user specified 
assertions in behavioral descriptions of hardware systems. The 
main contribution of this work is an assertion checking 
algorithm that allows applying interval-based techniques to 
cyclic descriptions while reducing path explosion problems. 

 
Index Terms—Interval Arithmetic, Assertion Checker, 

Design for Verification. 
 

I. INTRODUCTION 
 

he 2003 International Technology Roadmap for 
Semiconductors (ITRS) affirms that “Verification has 

become the dominant cost in the design process” and 
“Design conception and implementation are becoming mere 
preludes to the main activity of verification” [1]. Some 
studies show that up to 70% of the RTL design effort is 
spent on making sure that their chips meet specifications 
and perform as intended [2]. In order to reduce the 
verification cost several new “Design for Verification” 
(DFV) methodologies have been proposed. One of the most 
promising DFV methodologies is “Assertion-based 
Verification” (ABV) [4]. An assertion is a precise 
description of what behavior is expected. The main goal of 
an ABV technique is to verify that the user-specified 
assertions are not violated. Several dynamic (simulation-
time assertion checking) and/or static (assertion checkers) 
methods have been proposed [14]. 

Additionally, the use of higher levels of abstraction 
allows many forms of verification to be performed much 
earlier in the design process, reducing time to market and 
lowering cost by discovering problems earlier [2][3].  In this 
context, several works have proposed polynomial-based 
specification models that allow representing arithmetic and 
logic operations and checking system properties and 
parameters [5][6][7].  

In order to check properties of systems described with 
polynomials, a lot of constraint solvers and global 
optimizers have been proposed [15]. Some of them are 
based on Interval Analysis and they have mainly been used 
 
 

 

for power and timing analysis of software processes [8][9] 
and assertion checking [13]. 

One of the problems of these tools is to verify systems 
with cycles. Loops are basic control elements, commonly 
used in system descriptions, but they introduce important 
verification problems. For example, multimedia applications 
normally have a large number of loops. The verification by 
means of pseudo-exhaustive simulation in a workstation or 
(parallel) DSP board can be impossible due to the large 
amount of memory necessary [10]. Formal techniques (e.g. 
theorem provers, model checkers) could verify simple 
systems but they need too much designer knowledge to be 
automated and they are not able to verify medium size 
designs. Other BDD-based methods [12] have been 
proposed (like symbolic simulation [11]) but the verification 
effort grows so fast that the algorithm explodes even for 
medium size problems. 

This paper presents a static assertion checking technique 
for hardware behavioral models, which are modeled with 
polynomials. The algorithm generates vectors automatically 
to detect the violation of the assertion. If no counter-
example is found, the assertion is fulfilled by the 
description. The technique is based on a modified Interval 
Analysis and it reduces the verification effort because there 
is no need to explicitly unroll loops. 

MODified Interval Analysis (MODIA) [13] is able to find 
an input space that violates some assertions while verifying 
all the control statements (if-then-else structure) of the path, 
which fulfils the assertion. The proposed verification 
algorithm expands interval analysis to handle cyclic 
descriptions without the need of explicitly unrolling the 
loops. 

After this introduction, the hardware system description 
methodology is presented in section 2. Section 3 describes 
the interval analysis oriented modeling of control 
statements: conditional (“if-then-else”) and endless loop 
(process) structures. Section 4 presents the verification 
algorithm and in section 5, an example is presented. Finally, 
experimental results and some conclusions and future work 
are commented. 

II. SYSTEM MODELING 
 

In this approach the hardware system is described at 
behavioral level as a set of concurrent processes. The 
proposed verification technique is focused on individual 
process validation, thus only one process will be considered. 
This process is suspended in an initial wait statement until 
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the input values change. After this, the process body is 
executed until the initial statement (wait statement) is 
reached. The process is suspended in this statement until the 
input values change again (Fig. 1 shows this behavior). The 
straight arrows model the external inputs (Xi) and the 
outputs (Zi). The gray box represents the ‘wait’ statement 
and the dashed line the memories or state variables (Ii). The 
dotted lines represent the execution paths (functionality) of 
the process. Depending on the number of state variables, the 
process can be classified as: 

 
 

a) Process without memory, when there are no memories 
or state variables. 

 b) Process with memory, when there are state variables. 
 
 

The model only considers integer variables and the 
supported operators are addition, subtraction, multiplication 
and relational. Word-level logic operators (e.g. “or reduce”) 
and the bit-level logic operations are transformed into 
integer polynomials and other operators (e.g. dividers) are 
supported with common RT-synthesis restrictions. 
Concerning control statements, the conditional ‘if’ 
statements are totally supported and the loop statements are 
supported with restrictions: only one loop (process loop) is 
supported during analysis, thus other loops have to be 
statically unrolled. 

The process body (dotted lines in Fig. 1) is modeled with 
polynomials whose input space changes in every iteration. 
The assertions to be checked will be modeled with 
polynomial inequalities. In order to verify the assertions of 
the process, it is not necessary to unroll the loop; it would 
be enough to determine the next input space after iteration is 
executed and apply the verification algorithm (with the new 
input space) to the loop body. 

 
 X1 X2 X3 

Z1

I1 

 
Fig. 1. System Model. 

 
Thus, the proposed technique modifies the ranges of the 

process inputs (arrow lines in Fig. 1) every time a new 
iteration is executed. The verification process finishes when 
the complete input space is analyzed or an assertion is 
violated. Inside the process, every execution path in the 
behavioral description is described by a set of inequalities 
(which model the if-statement conditions and assertion) and 
polynomials (which model the path functional behavior). 

Fig. 2 shows a simple C-style example with only two paths 
in the process (“example” function). The path ‘Then’ has 
two inequalities: one to describe the control statement 
[Then1] and the other the assertion [Then2]. The other path 
(‘Else’) has the complementary inequality of the control 
statement [Else1] and the assertion [Else2]. 

 
int example (int x, int y) { 
   DO { 
      Wait until x, y: 
       … 
       if (5*y > x) { 
           // Path Then 
           ret = x + y;  
       else 
           // Path Else 
           ret = x*x -y + 25; 
        } ...  
   } WHILE (true); 
 

   Assertion  ret ≤ 255; 
} 

 
Constraints: 
     X ∈ [0,255]; 
     Y ∈ [0,255]; 
… 
 
Path “Then” polynomials: 
 [Then1] 5*y - x > 0 
 [Then2] x + y - 255 > 0 
 
Path “Else” polynomials: 
 [Else1] x - 5*y + 1 > 0 
 [Else2] x*x - y + 25 - 255 > 0 
… 

a) Behavioral description b) Polynomial description 

Fig. 2.  Polynomial description of a simple example. 
 
The main disadvantage of this approach is that the 

number of the paths grows with ‘2n’, where ‘n’ is the 
number of conditional statements in the loop, in the worst 
case (no-nested conditional statements). ‘Case’ statement, 
can be translated into several nesting ‘if-then-else’ 
structures. If so , the number of paths is equal to the number 
of different ‘case’ options. 

 

III. ANALYSIS OF THE LOOP STATEMENTS 
 

The model of loop statement is very important in the 
proposed approach, so it will be discussed in this section. In 
order to verify assertions inside these structures, two 
important properties have to be considered: 

 
1. The loop-body code is equal in all iterations. 
2. Every time the loop (or process) is executed (new 

iteration), the input space of the loop-body is modified. The 
range of the internal variables for the next iteration is 
derived from the current iteration results. 

 
A consequence of the first observation is that the same 

input and internal variable intervals will produce the same 
results. Thus, only the new portions of the resulting 
intervals (the new areas of the state variable ranges) have to 
be analyzed in the next iteration (second observation). 
These new input intervals reflect the differences between 
the input spaces of the previous iterations and the current 
iteration. A simple example is shown in Fig. 3.  

The original input space (N-dimensional) is the vertically 
shaded area that represents the state variable ranges. The 
external input ranges are not represented because they are 
the same in all iterations. The execution of the process body 
(first iteration) generates a resultant space that is composed 
of horizontally and vertically shaded areas. The vertically 
shaded area has already been evaluated in the first iteration, 
thus only the horizontally shaded area has to be evaluated in 



 
 

 

the second iteration (next input space). This process is 
repeated until the third iteration. In this iteration the process 
body execution generates a resultant space that is included 
in the previously evaluated input spaces. Thus all input 
space has been covered and the search step is finished.  

The way to detect the conclusion of the verification 
process without a counter-example is to explore all the input 
space, that is, to reach an iteration in which the resultant 
space has already been evaluated. This exploration process 
will last a finite time because the hardware variable has a 
predefined range (finite number of bits) and every new 
iteration reduces the possible new input space.  

 
 Iteration 1 Iteration 2 Iteration 3

State 
variables 

Process-
Body 

 Process-
Body 

Process-
Body the same 

 
Fig. 3. Example of input space determination 

 

IV. INTERVAL-BASED SYSTEM-LEVEL 
VERIFICATION 

In order to verify a process, an interval analysis technique 
(MODIA [13], MODified Interval Analysis) is used. 

A. The MODified Interval Analysis 
 The proposed verification algorithm is guided by this 

interval analysis technique. The goal is to calculate the 
bounds of an inequality system (one execution path), and 
identify input spaces (intervals) that fulfill the inequalities 
(the input constraints and ‘if-then-else’ structures) and 
violate the assertions. One drawback of this approach is the 
overestimation of the bounds. A classical solution to this 
problem is to split the original space into several spaces and 
apply the interval analysis to them. This reduces the 
overestimations but increases the algorithm computation 
complexity. In this proposal, this partition effort is used to 
find counter-examples (points that violate the assertions). 
Fig. 4 shows an example with two inputs: X1 and X2. The 
function P(X1, X2) models the property to verify. The gray 
areas are input space values that violate the property and the 
black points (extremities of intervals) are the input space 
points that MODIA evaluates. Using MODIA bounds, the 
partition technique selects a space and splits it into two 
pieces. During this process, it is possible that a new extreme 
point is selected inside a gray box (white point). This point 
violates the property, thus it is the target counter example. 

Some spaces can be deleted if an inequality is not fulfilled 
by all points of the input interval. 

 

XI2

XI1 XS1 

XS2

P(X1,X2)

 
Fig. 4. Evaluated Input Space Points 

B. The algorithm 
The verification algorithm uses a breadth-first search 

(BFS) technique. First, the algorithm takes the complete 
process input intervals, and calculates the new intervals of 
the internal-variables for each path. The following step is 
the elimination of the part of the new ones that has already 
been evaluated in the first iteration. In the second iteration, 
these new intervals and the original external input intervals 
are applied to generate the new internal space. The 
evaluated part of this new space is removed. The following 
iterations repeat the steps until there is an iteration that 
violates an assertion. In this case, all iterations are removed 
and the complete space of the first iteration is split into two 
pieces to increase the precision of the bounds. The 
algorithm resumes the previously commented steps but with 
twice as many as the spaces in the first iteration.  

Furthermore, the algorithm also calculates the internal 
values for each extreme point of the input intervals (they are 
the special points to find a counter-example). In the second 
iteration, for each new internal value, it calculates the new 
interval value for each special point of the external input 
intervals. For example, if there are 2 new internal values and 
the number of extreme points is 4 (number of external 
inputs + 2), the result is 8 new internal values, 4 for each 
new internal value. These steps are repeated for all 
iterations. If a counter-example is detected, the algorithm is 
stopped and the sequence of the inputs is shown.  

When the partition of the input interval is done, new 
extreme points are added without eliminating the points that 
have already been calculated. These new points are 
evaluated in the following iterations until reaching the 
iteration in which the violation was produced. From this 
iteration, all points are considered for the next iterations. 

The algorithm pseudo-code is the following: 
 
Assign the special points of complete space as possible 

counter-examples. 
Violation number = 0; 
do { 
    If (Violation number > 0) then 
       The internal-variable intervals of the different 

iterations are removed. 



 
 

 

       The space of the first iteration is split. 
       Violation number = 0;       Iteration number = 0; 
    Else 
       Evaluate the new extreme points in the iteration i. 
       If (there is a counter-example) then 
           Finish the algorithm: One counter-example is 

found. The assertion is not fulfilled. 
    End if; 

Loop (for each new internal-variable interval of the 
iteration i) 

           Loop (for each path) 
               Calculate the internal-variable intervals for the 

iteration number i + 1.  
               If (a violation exists) then  
                   Violation number = 1; 
               End if; 
           End loop; 
       End loop; 
       If (Violation number is equal to zero) then 

Eliminate the evaluated part of the internal-
variable intervals of the iteration number i + 1. 

           Next iteration: i = i + 1; 
    End if; 
} while (Violation number is different to zero or there is a 

new internal-variable interval of the iteration i or 
more). 

Finish the algorithm: The assertion is fulfilled over the 
whole input interval. 

V. EXAMPLE 
The example in Fig. 5 has only one process (‘proc’) with 

an external input variable, ‘x’, and an internal variable, ‘y’. 
The initial value of ‘y’ is also an input of the ‘proc’ 
function. 

 

int proc (int x, int y)  {           
   // Constraints: 0≤x≤63, 32≤y≤63 
   int temp, ret;              
   DO {   
         Wait until x; 
         temp = (y – 110)2 + (x + 57)2; 
 if (temp < 10000) 

          if (y ≥ 4*x) // Path  
                       ret = 2*y;       
                   else  // Path  
                     ret = x + 2*y;       
     y = ret; 

  Assert(ret < 256);    // Assertion 
            } WHILE (true); 

} 

B 

A 
[R1] 

[A] 

[R2] 

 
Fig. 5. Example 

 
 

The verification algorithm begins with the complete input 
process intervals (x ∈ [0,63], y ∈ [32,63]). For each 
iteration, the internal variable (y), constraint (R1 and R2), 
assertion (A) intervals are determined and the output of the 
interval extremities are computed. After 2 iterations, a 
possible violation is detected in several paths (framed text) 
but no extreme points are counterexamples. These intervals 
are shown in Fig. 6 and the evaluated points in the Table I. 
The ‘---’ symbol marks input combinations that do not reach 

the assertion. 
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Fig.  6. ‘Search’ step 
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Fig. 7. ‘Justification’ step 

 

In order to improve the interval accuracy, the first-
iteration ‘x’-input interval is split into two intervals: 
partition 1 (0, 31) and partition 2 (31, 63). Using the interval 
analysis algorithm, new intervals are generated (Fig. 7). 
Only the BB path is shown to simplify the figure. The 
assertion is still violated in both partitions. This analysis 
uses the values of several extremities that are shown in 
Table II. 

 
TABLE I 

Extreme points evaluated in ‘search’ step (fig. 6) 
Iteration 1 Iteration 2 

Input(x,y) Output(y) Input(x,y) Output(y) 
(0,32) 64   
(0,63) 126   
(63,0) ---   
(63,63) ---   

TABLE II 
Extreme points evaluated in ‘justification’ step (fig. 7) 

 (31,32) ---   
(0,157) 314 (31,63) 157 (63,157) 377 

 
One of these points (first iteration x=31, y=63; second 



 
 

 

iteration x=63) violates the assertion, thus a counter-
example has been detected and the algorithm finished.  
 

VI. EXPERIMENTAL RESULTS 
 In order to validate the proposed technique, two sets of 

examples have been proposed. The first set (4 examples) 
includes data-dominated examples without memory, and the 
second set (2 examples) includes examples with memory 
(internal variable ‘D’). The C-like example codes are shown 
in the appendix. The CPU times in Table III correspond to 
seconds on a Pentium III with 256 MB of RAM at 300 MHz 
under Windows 2000. In the case of the “BerkMin” tool, the 
CPU times of the first column correspond to Sun Fire V120 
Ultra Sparc Iii with 512 MB of RAM running at 550 Mhz. 

The examples without memory are used to compare the 
algorithm with classical model checking tools (SMV[14]) 
and a SAT tool (BerkMin 5.6[15]). The results are presented 
in Table III(a). It shows the CPU time that the tools need to 
generate a correct answer. The term OFL (Out of Limit) 
normally identifies situations in which the program was 
aborted because the computer does not have enough 
memory resources. The tool ‘SMV’ is able to verify simple 
designs but the main disadvantage is that it runs “out of 
limit” (OFL) when the size of the input space grows. The 
“BerkMin” SAT results are presented in two columns. The 
first shows the “Sun Workstation” execution time that a 
synthesis tool (Synopsys Design Compiler) needs to 
generate the Conjunctive Normal Form (CNF). The second 
column shows the time that BerkMin needs to find the 
correct solution. The last column shows the proposed 
Assertion Checker results.  

 
TABLE III 

Comparison with property checkers. 
BerkMin  SMV 

Synt. Verif. 
Assertion 
Checker 

Simple  84s 180 s <1s  1 s
Conditional OFL 240 s 1s 1 s
Space3 OFL 240 s 1s 8 s
Space4 OFL 1020 s 36s 24 s

(a) Acyclic description 

 SMV Assertion 
Checker 

Number of Evaluated 
Iterations  

Linear  < 1s 1 s 10
Nonlinear 4.42 s 1 s 5

(b) Cyclic descriptions 
 

The other set (examples with memory) is executed by the 
tool ‘SMV’ and the proposed Assertion Checker. The 
results are shown in Table III(b). The tool ‘SMV’ needs to 
unroll the loops to handle them, while the proposed tools 
handle loops without unrolling. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, a method to check assertions at behavioral 

level is presented. The technique is based on a modified 
interval analysis (MODIA) that can be directly computed 
over the CDFG. In this way, the algorithm has been 
extended to handle processes (cyclic description) without 
unrolling. The algorithm can also be used to automatically 
generate functional vectors that exercise predefined paths or 
assertions. These vectors could be used to increase 
functional coverage metrics or random test generation. 

The advantage of this method is the efficiency of 
handling data-dominated algorithms independently of the 
range of the data. However, the main disadvantage is the 
explosion of the number of paths with the number of ‘if-
then-else’ structures. 

During cyclic description verification, the algorithm 
looks for possible input combinations that violate an 
assertion taking into account all conditional paths. Thus, the 
memory consumption grows when the number of iterations 
increases. In future work, the depth-first search will be 
implemented to solve this problem. Additionally, heuristic 
metrics based on statistical probabilities will be used to 
choose the path with highest probability to reach a violation. 
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APPENDIX 

A. Examples without memory 
The type ‘uint8’ is an integer with range 0 to 255. 

void simple (uint8 x, uint8 y) 
{ 
      int temp, dat, ret; 
 

      temp = (x – 110)2; 
      dat = (y – 42)2 + temp; 
      if (dat < 10000) 
      { 
            if (5*y > x) 
                  ret = x + y;       
            else 
                  ret = x + y;       
       }  
      …. 
     Assertion  ret ≤ 255; 
} 

void space4 (uint8 x, uint8 y, uint8 z, uint8 t) 
{ 
      int temp, ret; 
 

      temp= (x – 40)2 + (y – 28)2 + (z – 170)2; 
      if(10000 > temp) 
            temp= (x – 6)2 - (y – 120)2 + (t – 70)2 + 28; 
            if (2500 > temp) 
                  temp= x2 + 3*y*z2 – t2*z – 292*t3; 
                  if (temp > 0) 
                        temp= 6*y*x – 2*x4 – z3*x + 15*x2*y2; 
                        if(temp>0) 
                              temp= x*z*t + y*t2 – t3; 
                              if(temp>249) 
                                    ret= t*x*y2 – 8*z3; 
                              else 
                                    ret = 0; 
      ….            Assertion  ret ≤ 0; 

} 
void space3 (uint8 x, uint8 y, uint8 z) 
{ 
      int temp, dat, ret; 
 

      dat = (x – 110)2 – (y – 28)2; 
      temp = dat – (z – 170)2; 
      if (10000 > temp) 
            if (6*y – 2*x – 4*z > 0) 
                  ret = x + y + z;       
      else 
            ret = 0;       
      ….  
      Assertion  ret ≤ 340; 
} 

void conditional (uint8 x, uint8 y) 
{ 
      int temp, dat, ret; 
 

      temp = (x – 40)2; 
      dat = (y – 42)2 + temp; 
      if (10000 > dat +2*x-y) 
            temp= 6*y – 2*x – 4*(10000 – dat); 
      else 
            temp= x – 3*y +10000 – dat – 49; 
      ret(x – y + temp); 
      ….  
     Assertion  ret ≤ 1140; 
} 

B. Examples with memory 

 

D = D/2; D = D2 – 10;

 

D ∈ [18, 29] 

 

Temp = 3600 – (D-30)2 – (A-55)2 

Wait A  (A ∈ [4, 12]) 

Temp > 0 0 1 

Property:
D ≤ 4850 

Non-linear 

 

Number of external variables: 1 
Number of state variables: 1 

D = D + 4;

D > A0 1 

Property: 
D ≤ 94 

Wait A (A ∈ [10, 35]) 

D ∈ [3, 25] 

D = D + 7; 

Linear 

 
 
 

Number of external variables: 1 
Number of state variables: 1 

 


