
E00-707302419 1

Using Modified Interval Analysis in System Verification1

I. Ugarte, P.Sanchez
Microelectronics Engineering Group. TEISA Department. ETSIIT. University of Cantabria

Avda. los Castros s/n. 39005 Santander. Cantabria. Spain
{ ugarte, sanchez }@teisa.unican.es

Abstract—Interval arithmetic was original developed to
estimate rounding errors in floating-point computations but it is
now used in a wide variety of applications from constraint
solvers and global optimizers to power and timing analysis of
software processes. The objective of interval analysis (IA) is to
determine the output ranges (or interval) of a computation set.
The main problem of classical interval analysis is the
overestimation of the output ranges and its dependency on the
coding of the system behavior. In this paper, a modified interval
analysis method is presented. The method reduces the interval
overestimation and it is independent of the coding. This modified
interval analysis is the kernel of a new verification technique that
enables the verification of functional properties in system level
descriptions and obtains functional test vectors.

Index Terms— Interval Arithmetic, System Level Verification.

I. INTRODUCTION
As system complexity grows, designers describe it at higher

abstraction levels and spend more effort on verification. In
order to confront this growing complexity, it is essential to
define verification methodologies that allow the validation of
the design during the specification step, at system level.
Simulation is the most widely used verification technique, but
even if coverage metrics are used, it has several problems (test
bench definition, completeness, etc). Another possibility is to
use formal verification techniques. Some of these are based on
transforming the system description into a functionally
canonical form, such as BDDs [11], and deriving the solution
from this structure. Other verification techniques test the
satisfiability of properties (e.g. SAT-based verification [2, 7,
8, 9, 10]) or combine both approaches. However, these
previously commented approaches generally suffer from
exponential worst-case complexity [2], because they use
Boolean representations of the system that increase the
number of signals and operators during the verification
processes.

This paper proposes a methodology that uses a Finite State
Machine (FSM) technique to identify execution paths that
reach assertions. This technique is combined with a modified
non-linear solver to find counterexamples. Our approach
assumes that the data path has only arithmetic/relational
operations so all Boolean operators are converted into integer
arithmetic expressions and control constructions. Thus, the
main differences from the previously commented approaches

are that the proposed technique uses a higher abstraction level
(integer/real equations instead of Boolean equations) and
handles multiplications efficiently (non-linear equations). This
implies an important cost reduction when designs with a
complex data path are verified. The main drawbacks of the
proposed approach are that it can not handle efficiently
designs with a lot of word-level logic operators or execution
paths.

1 This work has been partially supported by the Spanish MCYT through the

TIC-2002-00660 project.

The kernel of the proposed technique is a MODified
Interval Analysis (MODIA). The objective of classical IA is to
determine the output ranges (or interval) of a computation set
[12]. Although this technique has been used previously in
verification (e.g. timing and power analysis in software [13]),
it has important drawbacks: overestimation of the output range
and expression dependency. For example, if the behavior of
the ‘y’ output is represented by the equation ‘y=(x*x)-x’ and
the ‘x’ input is defined in the range [-2,3], it is possible to
derive that the output ‘y’ will be defined in the range [-9,11]
using interval arithmetic [12]. However, if the output is
defined by the equivalent equation ‘y=x(x-1)’, the derived
range will be [-9,6]. Both approaches are overestimations of
the correct range, [-1/4,6].

The main objective of the proposed technique is to find an
input range that verifies a set of properties and/or constraints,
reducing the classical interval analysis overestimation and
being independent of the coding [14]. Additionally, the
proposed algorithm computes points instead of classical
intervals, allowing the reduction of the number of
computations.

II. SYSTEM MODELING
In our approach, we assume that the system is described at

behavioral level as a set of statements that operate with integer
data. The addition, subtraction and multiplication operators
are directly supported as well as ‘if’ control statements.
Concerning loop statements, a predefined number of iterations
are unrolled in a similar way as the time frame expansion in
Automatic Test Pattern Generation (ATPG) and Bounded
Model Checking [15]. Boolean operations are converted into
integer expressions as Fig. 1 shows.

The left column VHDL description (a) contains a single bit
(o1) and word-level (o2) Boolean operations. The first
operation is directly converted (b column) into an integer
expression but the second conversion needs 24 if statements.
These control statements increase the number of execution
paths and this reduces the algorithm efficiency.

E00-707302419 2

Variable a,b,c:
std_logic;
variable m,n,l: std_logic_
 vector (7 downto 0);

…
a:= b and c; - - o1
m:= n or l; - - o2
…

Variable a,b,c: integer range 0 to 1;
Variable m,n: integer range 0 to
255;
Variable t1,t2,t3: integer range
 0 to
255;
…
a:= b*c; - - o1
t1:=n; t2:=l;t3:=0;
if(t1>127 or t2>127) then
t3:=t3+128;
 if(t1>127) then t1:=t1-128; end if;
 if(t2>127) then t2:=t2-128; end if;
end if; -- bit 7
… -- bit …
m:=t3; - - o2

a) Boolean operators b) Converted integer operators
Fig. 1. Conversion from Boolean to integer expressions

Other operators (division, etc) are currently supported with

the same restrictions as commercial RTL synthesis tools (e.g.
Synopsys VHDL Compiler).

With the previously commented consideration, every
execution path in the behavioral description can be modeled
with polynomials (that model the system behavior) and a set
of constraints that model the if-statement conditions and
properties/assertions [16].

The main goal of the modified interval analysis (MODIA)
is to find the bounds of non-linear polynomial equations. The
algorithm is presented in section III, which is divided into five
parts. The first part explains the basic MODIA idea for one
dimension, the second shows the formal demonstrations of the
bounds, the third is an example of interval evaluation, the
fourth presents the proposed interval-oriented arithmetic and
the last part, the extension to N dimensions. The verification
algorithm (that is presented in section IV) uses these bounds
to find input integer intervals that satisfy the predefined set of
constraints, defined with non-linear polynomial inequalities.
Section IV also presents the execution-path extraction
algorithm. Finally, section V presents some experimental
results.

III. MODIFIED INTERVAL ANALYSIS

A. Basic Idea
At behavioral level, the functionality can be represented by

polynomial functions. Let P(x1, x2, ..., xN) be the polynomial
that describes the behavior of a system ‘S’ with an input space
of N integer variables that take positive values: x1 ∈ [xI1,xS1]
(0 ≤ xI1 ≤ x1 ≤ xS1), …, xN ∈ [xIN,xSN] (0 ≤ xIN ≤ xN ≤ xSN).
The algorithm can also handle systems in which some
variables take positive values and others negative values. If
the same variable takes positive and negative values, its input
interval is split into two parts (positive and negative
subinterval) and considered independently by the algorithm.
The analysis of intervals with negative values is totally
equivalent to the analysis with positive values and it has been

omitted to simplify the algorithm.
In order to find a maximum and minimum bound of a

polynomial, P(X), its expression is separated into two parts:
the positive (P+(X)) and negative part (P–(X)). A very
important property of the positive part (polynomial in which
all the monomials take positive values) is that it is an
increasing function. Similarly, the negative part (polynomial
in which all the monomials take negative values) is a
decreasing function. The expression of these polynomials
could be very complex (see equation 8) and, in order to bound
them, two simple functions are defined: PR(X) and PM(X). In
the case of a design with only one input, x, the expression of
these functions is presented in (1):

()
() βα +=

+=
n

M

R

xxP

cmxxP
 (1)

The ‘n’ parameter is equal to the order of the polynomial
that is being bounded (positive or negative part). The ‘m’,
’c’,’α’ and ‘β’ are calculated by evaluating the positive and
negative polynomials at the interval extremes (XI and XS). The
demonstrates are shown in subsection III.B.

It is easy to see that the original polynomial, P(X), is now
bounded by these simple functions (2):

() () ()
() () ()

() () ()
() () () () ()XPXPXPXPXP

XPXPXP

XPXPXP

XPXPXP

RMMR

RM

MR

−+−+

−+

−−−

+++

+≥≥+

+=

≥≥

≥≥

(2)

The maximum and minimum value of the bound functions

(PR+PM) can be calculated easily with classical derivative-
based algorithms.

B. Formal Demonstrations
Theorem 1. There is a upper bound function (PR(x)) for any
increasing polynomial (the positive part) in an interval of
input [xI, xS].

Proof. Let the positive polynomial, P+(x), be

() 01
1

1 ... axaxaxaxP N
N

N
N ++++= −

−
+

where aN > 0, ai ≥ 0 ∀i ∈ [0, N-1]. In order to simplify the
demonstration, the following variable change is carried out.

() IIS xtxxx
t

+−=
≤≤

*
10

The polynomial with the new variable is
() 01

1
1 ... btbtbtbtP N

N
N

N ++++= −
−

+
with bN > 0, bi ≥ 0 ∀i ∈ [0, N-1]. The upper bound function

() cmttPR +=
is the same at the extremities.

E00-707302419 3

() ()

() () cmPbP

cPbP

R

N

j
j

R

+===

===

∑
=

+

+

11

00

0

0

Any t must comply with
() () 0≥− + tPtPR

Substituting the expressions (3) into (4) and simplifying,

() () () ()

() () () 1101
0

1

1

00
10

0
1

1010101 −−
≥

−
≥

=

−

===

+

≥⇔≥−⇔≥−⇔≥−=

=−+−=−+=−

∑

∑∑∑
jjtj

bN

j

j
j

N

j

j
j

j
N

j
j

N

j
jR

ttttttb

bbttbtbbtbtPtP

for all t ∈ [0, 1].

In the case of the decreasing polynomial (the negative part),
the demonstration that (PM(x)) is a lower bound function of P-

(x), is similar.

Theorem 2. There is a lower bound function (PM(x)) for any
increasing positive polynomial in an interval of input [xI, xS].

Proof. As the above demonstration, take P+(t) to simplify the
proof.

() 01
1

1 ... btbtbtbtP N
N

N
N ++++= −

−
+

with bN > 0, bi ≥ 0 ∀i ∈ [0, N-1]. The lower bound function
() βα += n

M xxP
is the same at the extremities.

() ()

() () βα

β

+===

===

∑
=

+

+

11

00

0

0

M

N

j
j

M

PbP

PbP

Any t must compy with
() () 0≥−+ tPtP M

Substituting the expressions (5) into (6) and simplifying,

() () () ()

() () () jnjn
t

jnj
bN

j

jnj
j

N

j

nj
j

n
N

j
j

j
N

j
jM

ttttttb

bbttbbtbtbtPtP

−−
≥

−
≥

=

−

===

+

≥⇔≥−⇔≥−⇔≥−=

=−+−=

+−=−

∑

∑∑∑

1010101
00

1

00
1

0
10

for all t ∈ [0, 1].
In the case of the decreasing polynomial (the negative part),

the demonstrations that (PR(x)) is an upper bound function of
P-(x) is similar.

C. Example
The goal is to bound a one-dimensional polynomial (7). The

input space is x ∈ [0,6].

())486.551720
4
19.1

4
1

50
1 23456 +−−

 ++−= xxxxxxxP

As the inputs are always positive, the monomials with
positive coefficient constitute the positive part and the rest the
negative part. Their equations are shown in (8).

(3)

()

() ()

−−−=

 +++=

−

+

xxxxP

xxxxP

6.55179.1
50
1

4820
4
1

4
1

50
1

25

346

(8)(4)

In order to calculate the coefficients of PM and PR functions,

it is only necessary to evaluate the interval extremes (XI and
XS) (see Table I). In the next section, an efficient algorithm to
evaluate these values is presented. In this example, the
extreme values are:

x value XI = 0 XS = 6
Positive polynomial 0.96 327.12
Negative polynomial 0 314.4

Table I. Values at the extremities of (4)

Fig. 2 presents the bound of polynomial P(x). Its maximum

bound is (9) and its minimum bound is (10).

()
() 96.04.5200699.0

96.036.54044.0
6

5

+−=

++−=

xxxm

xxxM

(9)

(10)

In order to calculate the maximum and minimum values,

elementary derivative calculus is applied. The result is that the
function P(x) is bounded by the interval [-180.80, 177.06].
This result overestimates the real range, [-1.07, 12.7], but it is
better than the classical IA results, [-313.44, 327.12].

(5)

A classical way to improve the results is to split the original
interval into two subintervals and apply the algorithm to both.
MODIA improves this process thanks to an important
property: only the extreme values are needed to calculate the
bound functions. Thus, these values can be reused to calculate
the subinterval bounds. For example, if we want to calculate
the bounds of the [0,3] interval after we have calculated the
[0,6] interval, we will only have to evaluate the polynomials
P+ and P- at the point ‘3’, because the value at the other
extremity (point ‘0’) has been calculated during the estimation
of the [0,6] interval.

(6)

D. Data Flow Graph Evaluation
In order to avoid the extraction of the analytical expression

of the polynomials P+ and P- and/or symbolic computations,
the values that the polynomials take, are calculated directly
from the data flow graph. In order to do this, a new arithmetic
is defined (Fig. 3).

The idea is to replace the classical single-value operands by
two-value operands. The upper value (v+) represents the value
of the polynomial P+. The lower value (v-) represents the value
of the polynomial P-. Fig. 3 shows the redefinition of the
operations used (*, +, -).

(7)

E00-707302419 4

Fig. 2. Bounds of the polynomial.

+

+
+

+

−−

++

yx
yx
yx

–

+
+

−

+−

−+

yx
yx
yx

×

−

+

x
x
x

×+×
×+×

×

−++−

−−++

yxyx
yxyx

yx

−

+

y
y
y

−

+

x
x
x

−

+

y
y
y

−

+

x
x
x

−

+

y
y
y

Fig. 3. Modified interval arithmetic definition.

Operation Operand 1
order

Operand 2
order Result order

+ n m max(n, m)
- n m max(n, m)
* n m n + m

Table II. Input order calculation

In addition to the polynomial values, the polynomial order

is also needed to calculate the bound functions. This order is
also calculated with an operation redefinition, in a similar way
to polynomial values. Table II presents the new operation
definitions.

E. Extension to N dimensions
The basic idea of the extension to N dimensions is to split

the problem into N sub-problems and apply the one-dimension
approach (commented in subsection III.A) to each sub-
problem.

All these subspaces will have a common edge: the straight
line (diagonal line) that joines the XI≡(xI1,…,xIN) and
XS≡(xS1,…,xSN) extremities.

The diagonal line plays an important role in our technique
and, in order to identify it easily, a variable change is
performed. The elements of the new input vector T≡(t1,…,tN)
verify the following properties:

()

() INNINSNN

IIS

N

xtxxx

xtxxx
tt

+−=

+−=
≤≤≤≤

*
...

*
10...,,10

11111

1

() ()xPxP MR
−+ + (11)

() () ()xPxPxP −+ +=
It is very easy to characterize the diagonal points with the

new vector:
() 10,,...,,ointDiagonal_P ≤≤= ttttt

Additionally, the definition of the subspaces is also very

simple. For example, the subspace ‘i’ is defined as the set of
points (t1,…,ti,….,tN) in which the value of the ‘i’ dimension
coordinate is less than the other values, that is, the set that
verifies that ti ≤ tj ∀j≠i , j ∈ [1,N] and ti ∈ [0,1].

() ()xPxP RM
−+ +

XI XS In order to calculate the bound of a subspace, the algorithm
makes use of the increasing and decreasing character of the
polynomials P+ and P-. Let T≡(t1,…,tN) be an N dimensional
input vector and ∆T≡(∆t1,…,∆tN) be a positive shift (∆t1 ≥0,
…,∆tN ≥0). Thus, the positive (increasing) and negative
(decreasing) polynomials verify:

() (
() ()TTPTP

TTPTP

∆+≥

∆+≤
−−

++)

(12)

Let us focus on the polynomial P+ (the discussion for the

polynomial P- is similar). As a consequence of the previously
commented property, in the subspace ‘i’, the value of the
polynomial at a point, T, verifies that:

(13) () () (ED TPTPTP +++ ≤≤)

Where:
()
()
() pointExtremetT

pointDiagonaltttT

ijtttttT

iE

iiiD

jiNi

,1,...,,...,1
,,...,,...,

,,...,,...,1

≡
≡

≠∀≤≡

Expression (13) allows transforming the N-dimension

problem into a 1-dimensional problem. The basic idea is that
TD and TE are functions of only one variable, ti = t. Thus, we
could re-write (13) as:

(14) () () (tPTPtP ED
+++ ≤≤)

Where:
() ijtttttT iN ≠∀≤≡ ,,...,,...,1

P+

D and P+
E are 1-dimensional polynomials and they can be

bounded with the section III approach (equation (2)). Thus,
equation (14) can be re-written and completed with equation
(2) as:

() () () () ()
() () () () ()

() () ()
() () () () ()tPtPTPtPtP

TPTPTP

tPtPTPtPtP

tPtPTPtPtP

RMMR

REDM

REDM

−+−+

−+

−−−−−

+++++

+≥≥+

+=

≥≥≥≥

≤≤≤≤

(15)

E00-707302419 5

Where:
()
()
() βα +=

+=

≠∀≤≡

n
M

R

jN

ttP

cmttP

ijtttttT ,,,...,,...,1

In order to calculate the coefficient of the polynomials PR
+

and PM
+ for the ‘i’ subspace, the value of polynomial P+ has to

be evaluated at 3 points: XI= (0,…,0), XS=(1,…,1) and
Xi=(1,…,1,0,1,…1). All the subspaces need the value of the
XI and XS points, thus, only N+2 points will be needed to
bound P+ in the N subspaces.

It is very important to highlight that every evaluated point is
shared by 2N N-dimensional intervals, thus the average
number of points evaluated per interval is close to 1 in our
verification algorithm.

Using equations (11), the MODIA algorithm estimates the
P(T) bounds in every subspace. After the N subspaces have
been bounded, the algorithm determines the bounds of P(T) in
the complete input space.

IV. SYSTEM-LEVEL VERIFICATION BASED ON INTERVALS
The verification process begins from the behavioral

description of the system. This specification is compiled in a
control and data flow graph (CDFG) that contains only
arithmetic (+, -, *) and relational operations, assertions and
conditional statements (‘if’ constructions). At behavioral
level, scheduling has not been performed, thus there is no state
information in the graph.

For every path, there will be ‘m’ conditions that have to be
satisfied and ‘n’ assertions that have to be checked. These
constraints are modeled as the polynomial Ci (condition i) and
Aj (assertion j), thus:

()
() njXA

miXC

j

i
≤≤>
≤≤>

10
10

As we can see, all the constraints are converted into

inequalities of the type “greater than”.
The main goal of the verification algorithm is to find an

input functional vector, X ∈ [XI, XS], which satisfies the ‘m’
(16) inequalities and violates at least one of the (17)
assertions. A point U violates the assertions polynomial Aj(X)
if Aj(U) > 0. In order to calculate the bounds of the
polynomials Ci and Aj, the MODIA technique is used.

Additionally, during interval analysis the MODIA
technique evaluates every polynomial in N+2 points. Let Xk (1
≤ k ≤ N+2) be the set of points that MODIA has evaluated.
When MODIA bounds a path for a particular input interval
and the interval and path have not been previously removed, a
heuristic cost function (18) is defined:

PRCost ×+×= 5.05.0

Parameter ‘R’ measures the probability that the conditional
constraints are verified. Parameter ‘P’ measures the
probability that an assertion is violated.

The complete pseudo-code of the verification algorithm is
presented in the next section.

A. Pseudo-code of the Algorithm
The main goal of the algorithm is to find an input vector

that violates an assertion. In order to do this the algorithm
executes the next main loop for every assertion/property in the
description.

Enumerate all paths that reach the property
Select the complete input space as input interval
For every path
 Evaluate the cost function (eq. 18)
End for;
Loop (while there is a path to explore)
 Select the path with maximum cost
 Call path_evaluation function
End loop;

The path_evaluation function tries to find an input interval
that violates the assertion/properties. Its pseudo-code is:

Initialize the interval list with the complete input interval
Loop(while there is an input interval in the interval list)
 Select the input interval with maximum cost
 Split the selected interval into 2 subintervals
 Loop (for each subinterval)
 Loop (for each condition)
 Bound the polynomial with MODIA
 If(lower bound of the conditional > 0) then
 Eliminate the condition
 Elseif(upper bound of the conditional ≤ 0) then
 Remove the input interval from the list
 Next subinterval iteration
 Else (16)
 Calculate the parameter R (17) Endif;
 End loop;
 Loop(for every assertion of the path)
 Bound the polynomial with MODIA
 If(a point violates one assertion) then
 Counterexample detected
 Elseif(upper bound of the assertion ≤ 0) then
 Remove the input interval from the list
 Next subinterval iteration
 Else
 Calculate the parameter P
 Endif;
 End loop;
 Evaluate the cost function of equation 18
 Insert the new interval in the interval list
 End loop;
End loop;
A counterexample cannot be found.

(18)

E00-707302419 6

V. EXPERIMENTAL RESULTS
In order to validate the proposed technique, four behavioral

system descriptions have been proposed. The test benches are
data-dominated and they include non-linear behaviors and
from 8-bit to 36-bit wide data path operations. Table III shows
some properties of the selected test bench.

The performance of the proposed methodology has been
compared with two classical model checking tools (SPIN [4]
and SMV[3]) and two commercial tools: a demo version of [6]
(Commercial1) and a full version of [5] (Commercial2). The
results are presented in the Table IV. The table shows the
CPU time that the tools need to generate a correct answer. The
term OFL (Out oF Limit) normally identifies situations in
which the program was aborted because the computer does
not have enough memory resources. The CPU times in Table
IV correspond to seconds on a Pentium III with 256 MB of
RAM at 300 Mhz under Windows 2000. In the case of the
“Commercial2” tool, the CPU times correspond to Sun Fire
V120 Ultra-Sparc IIi with 512 MB of RAM running at 550
Mhz.

The tool ‘SPIN’ is not able to automatically explore the
input space, thus an exhaustive search procedure has been
included in the system description. SMV and SPIN are able to
check simple designs but they run “out of limits” (OFL) when
the size of the input space grows. The “Commercial 1” tool
(Verity-Check) is able to verify nearly all the proposed
examples. Only in one case, the tool was not able to provide a
solution after 12 hours of CPU time. The “Commercial 2” tool
(FormalCheck) runs on a different platform (Sun
Workstations) thus, its execution times are not totally
equivalent to the other tools. This tool has problems with the
“Space4” test bench because it is not able to handle relational
operators with more than 30 bits.

The proposed methodology spends less than a second to
verify the proposed test bench. These results are better than
other tools and only SPIN is able to obtain similar results in
two examples.

VI. CONCLUSIONS AND FUTURE WORK
A method to check properties (or assertions) in behavioral-

level system specifications has been presented. The method is
based on a modified interval analysis (MODIA) that can be
directly computed over the CDFG, requiring (on average) the
computation of about one new point per interval, reducing the
classical overestimation problem of the IA techniques.
Moreover, it is independent of the coding style of the
algorithm. Using MODIA, the proposed verification algorithm
explores the input space, looking for input intervals in which
the violation of the assertion is more probable. The algorithm
can also be used to automatically generate functional vectors
that exercise predefined paths or properties. These vectors
could be used to increase functional coverage metrics or
replace random test generators.

The proposed technique has been evaluated with different
examples and it produces better results than commercial and

classical research model checkers.
The future work in this line is focused on two areas. The

goal of the first is to extend the proposed methodology to
handle RT-level descriptions. The second is to try to improve
the methodology in order to avoid unrolling the loops and
support more operators, concurrency, temporal expressions,
and modular descriptions.

Benchmark #input
vectors #solutions #constraints Polynomial

order
Simple 2562 2509 3 2
Conditional 2562 1 2 2
Space3 2563 1 3 2
Space4 2564 2 6 4

Table III. Test bench properties

 SPIN SMV Comm. 1 Comm. 2 MODIA

Simple 1 s 84 s 9 s 7 s 1 s
Conditional 1 s OFL 120 s 100 s 1 s

Space3 OFL OFL 22796 s 1637 s 1 s
Space4 OFL OFL > 12 hours OFL 1 s

Table IV: Comparison with property checkers.

REFERENCES

[1] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, R. Ernst, “Interval-Based
Analysis of Software Processes”, LCTES '2001, pages 94-101,
Snowbird, Utah, USA, June 2001.

[2] J.P. Marques-Silva, K. A. Sakallah, “Boolean Satisfiability in Electronic
Design Automation”, DAC 2000.

[3] K.L. McMillan. “Symbolic Model Checking: An approach to the State
Explosion Problem”. Kluwer Academic. 1993.

[4] G. Holzmann. “The Model Checker SPIN”. IEEE Trans. On Software
Engineering. Vol 23, No. 5. May 1997.

[5] FormalCheck. Cadence Design System.
http://www.cadence.com/datasheets/formalcheck.html

[6] Verity-Check. http://www.veritable.com/
Computer/DesignVerityCheck.pdf

[7] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, “Symbolic Model
Checking Using SAT procedures instead of BDDs*”. Proc. of DAC’99.
1999.

[8] F. Fallah, S. Nevadas, K. Keutzer. “Functional Vector Generation for
HDL models Using Linear Programming and Boolean Satisfiability”.
IEEE Trans. of Computer-Aided Design of Integrated Circuits and
Systems. Vol 20. No 8. August 2001.

[9] Z. Zeng, P. Kalla, M. Ciesielski. “LPSAT: A Unified Approach to RTL
Satisfiability”. Proc. of DATE’01. 2001.

[10] C. Huang, K. Cheng, “Assertion Checking by Combined Word-level
ATPG and Modular Arithmetic Constraint-Solving Techniques”, DAC
2000.

[11] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation”, IEEE Transactions on Computers 35(8): (677-691),
1986.

[12] R.E. Moore. Interval analysis. Prentice-Hall, 1966.
[13] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, R. Ernst, “Interval-Based

Analysis of Software Processes”, LCTES '2001, Snowbird, Utah, USA,
June 2001.

[14] I. Ugarte, P. Sanchez, “System Verification Based on Modified Interval
Analysis”, ETW’03. 2003.

[15] A. Biere, “SAT & ATPG in Formal verification”. Embedded Tutorial in
ICCAD’02. 2002.

[16] P. Sanchez, S. Dey, “Simulation-based system-level verification using
polynomials”. HLDVT’99. 1999.

http://www.cadence.com/datasheets/formalcheck.html

