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Abstract—Interval arithmetic was original developed to 
estimate rounding errors in floating-point computations but  it is 
now used in a wide variety of applications from constraint 
solvers and global optimizers to power and timing analysis of 
software processes. The objective of interval analysis (IA) is to 
determine the output ranges (or interval) of a computation set. 
The main problem of classical interval analysis is the 
overestimation of the output ranges and its dependency on the 
coding of the system behavior. In this paper, a modified interval 
analysis method is presented. The method reduces the interval 
overestimation and it is independent of the coding. This modified 
interval analysis is the kernel of a new verification technique that 
enables the verification of functional properties in system level 
descriptions and obtains functional test vectors. 
 

Index Terms— Interval Arithmetic, System Level Verification. 
 

I. INTRODUCTION 
As system complexity grows, designers describe it at higher 

abstraction levels and spend more effort on verification. In 
order to confront this growing complexity, it is essential to 
define verification methodologies that allow the validation of 
the design during the specification step, at system level. 
Simulation is the most widely used verification technique, but 
even if coverage metrics are used, it has several problems (test 
bench definition, completeness, etc). Another possibility is to 
use formal verification techniques. Some of these are based on 
transforming the system description into a functionally 
canonical form, such as BDDs [11], and deriving the solution 
from this structure. Other verification techniques test the 
satisfiability of properties (e.g. SAT-based verification [2, 7, 
8, 9, 10]) or combine both approaches. However, these 
previously commented approaches generally suffer from 
exponential worst-case complexity [2], because they use 
Boolean representations of the system that increase the 
number of signals and operators during the verification 
processes. 

This paper proposes a methodology that uses a Finite State 
Machine (FSM) technique to identify execution paths that 
reach assertions. This technique is combined with a modified 
non-linear solver to find counterexamples. Our approach 
assumes that the data path has only arithmetic/relational 
operations so all Boolean operators are converted into integer 
arithmetic expressions and control constructions. Thus, the 
main differences from the previously commented approaches 

are that the proposed technique uses a higher abstraction level 
(integer/real equations instead of Boolean equations) and 
handles multiplications efficiently (non-linear equations). This 
implies an important cost reduction when designs with a 
complex data path are verified. The main drawbacks of the 
proposed approach are that it can not handle efficiently 
designs with a lot of word-level logic operators or execution 
paths. 

 
1 This work has been partially supported by the Spanish MCYT through the 

TIC-2002-00660 project. 

The kernel of the proposed technique is a MODified 
Interval Analysis (MODIA). The objective of classical IA is to 
determine the output ranges (or interval) of a computation set 
[12]. Although this technique has been used previously in 
verification (e.g. timing and power analysis in software [13]), 
it has important drawbacks: overestimation of the output range 
and expression dependency. For example, if the behavior of 
the ‘y’ output is represented by the equation ‘y=(x*x)-x’ and 
the ‘x’ input is defined in the range [-2,3], it is possible to 
derive that the output ‘y’ will be defined in the range [-9,11] 
using interval arithmetic [12]. However, if the output is 
defined by the equivalent equation ‘y=x(x-1)’, the derived 
range will be [-9,6]. Both approaches are overestimations of 
the correct range, [-1/4,6]. 

The main objective of the proposed technique is to find an 
input range that verifies a set of properties and/or constraints, 
reducing the classical interval analysis overestimation and 
being independent of the coding [14]. Additionally, the 
proposed algorithm computes points instead of classical 
intervals, allowing the reduction of the number of 
computations. 

II. SYSTEM MODELING 
In our approach, we assume that the system is described at 

behavioral level as a set of statements that operate with integer 
data. The addition, subtraction and multiplication operators 
are directly supported as well as ‘if’ control statements. 
Concerning loop statements, a predefined number of iterations 
are unrolled in a similar way as the time frame expansion in 
Automatic Test Pattern Generation (ATPG) and Bounded 
Model Checking [15]. Boolean operations are converted into 
integer expressions as Fig. 1 shows. 

The left column VHDL description (a) contains a single bit 
(o1) and word-level (o2) Boolean operations. The first 
operation is directly converted (b column) into an integer 
expression but the second conversion needs 24 if statements. 
These control statements increase the number of execution 
paths and this reduces the algorithm efficiency. 
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Variable a,b,c: 
std_logic; 
variable m,n,l:  std_logic_ 
       vector  (7  downto 0); 
 
… 
a:= b and c;  - - o1 
m:= n or l;     - - o2 
… 

Variable a,b,c: integer range 0 to 1; 
Variable m,n: integer range 0 to 
255; 
Variable t1,t2,t3: integer range  
                                             0 to 
255; 
… 
a:=  b*c;              - - o1 
t1:=n; t2:=l;t3:=0; 
if(t1>127 or t2>127) then  
t3:=t3+128;  
   if(t1>127) then t1:=t1-128; end if; 
   if(t2>127) then t2:=t2-128; end if; 
end if;                 -- bit 7 
…                       -- bit … 
m:=t3;                        - - o2 

a) Boolean operators   b) Converted integer operators 
Fig. 1.  Conversion from Boolean to integer expressions 

 
Other operators (division, etc) are currently supported with 

the same restrictions as commercial RTL synthesis tools (e.g. 
Synopsys VHDL Compiler).  

With the previously commented consideration, every 
execution path in the behavioral description can be modeled 
with polynomials (that model the system behavior) and a set 
of constraints that model the if-statement conditions and 
properties/assertions [16].  

The main goal of the modified interval analysis (MODIA) 
is to find the bounds of non-linear polynomial equations. The 
algorithm is presented in section III, which is divided into five 
parts. The first part explains the basic MODIA idea for one 
dimension, the second shows the formal demonstrations of the 
bounds, the third is an example of interval evaluation, the 
fourth presents the proposed interval-oriented arithmetic and 
the last part, the extension to N dimensions. The verification 
algorithm (that is presented in section IV) uses these bounds 
to find input integer intervals that satisfy the predefined set of 
constraints, defined with non-linear polynomial inequalities. 
Section IV also presents the execution-path extraction 
algorithm. Finally, section V presents some experimental 
results. 

III. MODIFIED INTERVAL ANALYSIS 

A. Basic Idea 
At behavioral level, the functionality can be represented by 

polynomial functions. Let P(x1, x2, ..., xN) be the polynomial 
that describes the behavior of a system ‘S’ with an input space 
of N integer variables that take positive values: x1 ∈ [xI1,xS1]  
(0 ≤ xI1 ≤ x1 ≤ xS1), …, xN ∈ [xIN,xSN]  (0 ≤ xIN ≤ xN ≤ xSN). 
The algorithm can also handle systems in which some 
variables take positive values and others negative values. If 
the same variable takes positive and negative values, its input 
interval is split into two parts (positive and negative 
subinterval) and considered independently by the algorithm. 
The analysis of intervals with negative values is totally 
equivalent to the analysis with positive values and it has been 

omitted to simplify the algorithm. 
In order to find a maximum and minimum bound of a 

polynomial, P(X), its expression is separated into two parts: 
the positive (P+(X)) and negative part (P–(X)). A very 
important property of the positive part (polynomial in which 
all the monomials take positive values) is that it is an 
increasing function.  Similarly, the negative part (polynomial 
in which all the monomials take negative values) is a 
decreasing function. The expression of these polynomials 
could be very complex (see equation 8) and, in order to bound 
them, two simple functions are defined: PR(X) and PM(X). In 
the case of a design with only one input, x, the expression of 
these functions is presented in (1): 
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The ‘n’ parameter is equal to the order of the polynomial 
that is being bounded (positive or negative part).  The ‘m’, 
’c’,’α’ and ‘β’ are calculated by evaluating the positive and 
negative polynomials at the interval extremes (XI and XS). The 
demonstrates are shown in subsection III.B. 

It is easy to see that the original polynomial, P(X), is now 
bounded by these simple functions (2): 
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The maximum and minimum value of the bound functions 

(PR+PM) can be calculated easily with classical derivative-
based algorithms.  

 

B. Formal Demonstrations 
Theorem 1. There is a upper bound function (PR(x)) for any 
increasing polynomial (the positive part) in an interval of 
input [xI, xS]. 
 
Proof. Let the positive polynomial, P+(x), be 

( ) 01
1

1 ... axaxaxaxP N
N

N
N ++++= −

−
+  

where aN > 0, ai ≥ 0 ∀i ∈ [0, N-1]. In order to simplify the 
demonstration, the following variable change is carried out. 

( ) IIS xtxxx
t

+−=
≤≤

*
10

 

The polynomial with the new variable is 
( ) 01

1
1 ... btbtbtbtP N

N
N

N ++++= −
−

+  
with bN > 0, bi ≥ 0 ∀i ∈ [0, N-1]. The upper bound function  

( ) cmttPR +=  
is the same at the extremities. 
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Any t must comply with 
( ) ( ) 0≥− + tPtPR  

Substituting the expressions  (3) into (4) and simplifying,  
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for all t ∈ [0, 1]. 
 
In the case of the decreasing polynomial (the negative part), 
the demonstration that (PM(x) ) is a lower bound function of P-

(x), is similar. 
 

Theorem 2. There is a lower bound function (PM(x)) for any 
increasing positive polynomial in an interval of input [xI, xS].  
 
Proof. As the above demonstration, take P+(t) to simplify the 
proof. 
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with bN > 0, bi ≥ 0 ∀i ∈ [0, N-1].  The lower bound function 
( ) βα += n

M xxP  
is the same at the extremities. 
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Substituting the expressions (5) into (6) and simplifying, 
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for all t ∈ [0, 1]. 
In the case of the decreasing polynomial (the negative part), 

the demonstrations that (PR(x)) is an upper bound function of 
P-(x) is similar. 

 

C. Example 
The goal is to bound a one-dimensional polynomial (7). The 

input space is x ∈ [0,6].  
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As the inputs are always positive, the monomials with 
positive coefficient constitute the positive part and the rest the 
negative part. Their equations are shown in (8). 

(3)
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(8)(4)

 
In order to calculate the coefficients of PM and PR functions, 

it is only necessary to evaluate the interval extremes (XI and 
XS) (see Table I). In the next section, an efficient algorithm to 
evaluate these values is presented. In this example, the 
extreme values are: 

 
x value XI = 0 XS = 6 
Positive polynomial 0.96 327.12 
Negative polynomial 0 314.4 

Table I.  Values at the extremities of (4) 
 
Fig. 2 presents the bound of polynomial P(x). Its maximum 

bound is (9) and its minimum bound is (10). 
 

( )
( ) 96.04.5200699.0

96.036.54044.0
6

5

+−=

++−=

xxxm
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(9) 

(10) 

 
In order to calculate the maximum and minimum values, 

elementary derivative calculus is applied. The result is that the 
function P(x) is bounded by the interval  [-180.80, 177.06]. 
This result overestimates the real range, [-1.07, 12.7], but it is 
better than the classical IA results, [-313.44, 327.12]. 

(5)

A classical way to improve the results is to split the original 
interval into two subintervals and apply the algorithm to both. 
MODIA improves this process thanks to an important 
property: only the extreme values are needed to calculate the 
bound functions. Thus, these values can be reused to calculate 
the subinterval bounds.  For example, if we want to calculate 
the bounds of the [0,3] interval after we have calculated the 
[0,6] interval, we will only have to evaluate the polynomials 
P+ and P- at the point ‘3’, because the value at the other 
extremity (point ‘0’) has been calculated during the estimation 
of the [0,6] interval. 

(6)

 

D. Data Flow Graph Evaluation 
In order to avoid the extraction of the analytical expression 

of the polynomials P+ and P- and/or symbolic computations, 
the values that the polynomials take, are calculated directly 
from the data flow graph. In order to do this, a new arithmetic 
is defined (Fig. 3).  

The idea is to replace the classical single-value operands by 
two-value operands. The upper value (v+) represents the value 
of the polynomial P+. The lower value (v-) represents the value 
of the polynomial P-. Fig. 3 shows the redefinition of the  
operations used (*, +, -). 

(7)
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Fig. 2.  Bounds of the polynomial. 
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Fig. 3.  Modified interval arithmetic definition. 

 
 

Operation Operand 1 
order 

Operand 2 
order Result order 

+ n m max(n, m) 
- n m max(n, m) 
* n m n + m 

Table II.  Input order calculation 
 
In addition to the polynomial values, the polynomial order 

is also needed to calculate the bound functions. This order is 
also calculated with an operation redefinition, in a similar way 
to polynomial values. Table II presents the new operation 
definitions. 

E. Extension to N dimensions 
The basic idea of the extension to N dimensions is to split 

the problem into N sub-problems and apply the one-dimension 
approach (commented in subsection III.A) to each sub-
problem. 

All these subspaces will have a common edge: the straight 
line (diagonal line) that joines the XI≡(xI1,…,xIN) and 
XS≡(xS1,…,xSN)   extremities.  

The diagonal line plays an important role in our technique 
and, in order to identify it easily, a variable change is 
performed. The elements of the new input vector T≡(t1,…,tN) 
verify the following properties: 

( )
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xtxxx

xtxxx
tt
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( ) ( )xPxP MR
−+ + (11) 

( ) ( ) ( )xPxPxP −+ +=   
It is very easy to characterize the diagonal points with the 

new vector:  
( ) 10,,...,,ointDiagonal_P ≤≤= ttttt  

 
Additionally, the definition of the subspaces is also very 

simple. For example, the subspace ‘i’ is defined as the set of 
points   (t1,…,ti,….,tN) in which the value of the ‘i’ dimension 
coordinate is less than the other values, that is, the set that 
verifies that ti ≤  tj  ∀j≠i , j ∈ [1,N] and ti ∈ [0,1]. 

( ) ( )xPxP RM
−+ +

XI XS In order to calculate the bound of a subspace, the algorithm 
makes use of the increasing and decreasing character of the 
polynomials P+ and P-. Let T≡(t1,…,tN) be an N dimensional 
input vector and  ∆T≡(∆t1,…,∆tN) be a positive shift (∆t1 ≥0, 
…,∆tN ≥0). Thus, the positive (increasing) and negative 
(decreasing) polynomials verify: 
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Let us focus on the polynomial P+ (the discussion for the 

polynomial P- is similar). As a consequence of the previously 
commented property, in the subspace ‘i’, the value of the 
polynomial at a point, T, verifies that: 

 
(13) ( ) ( ) ( ED TPTPTP +++ ≤≤ )  
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Expression (13) allows transforming the N-dimension 

problem into a 1-dimensional problem. The basic idea is that 
TD and TE are functions of only one variable, ti = t. Thus, we 
could re-write (13) as: 

(14) ( ) ( ) (tPTPtP ED
+++ ≤≤ )  

Where: 
( ) ijtttttT iN ≠∀≤≡ ,,...,,...,1  

 
P+

D and P+
E are 1-dimensional polynomials and they can be 

bounded with the section III approach (equation (2)). Thus,  
equation (14) can be re-written and completed with equation 
(2) as: 
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Where: 
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In order to calculate the coefficient of the polynomials PR
+ 

and PM
+ for the ‘i’ subspace, the value of polynomial P+ has to 

be evaluated at 3 points: XI= (0,…,0), XS=(1,…,1) and 
Xi=(1,…,1,0,1,…1). All the subspaces need the value of the 
XI and XS points, thus, only N+2 points will be needed to 
bound P+ in the N subspaces.  

It is very important to highlight that every evaluated point is 
shared by 2N N-dimensional intervals, thus the average 
number of points evaluated per interval is close to 1 in our 
verification algorithm.  

Using equations (11), the MODIA algorithm estimates the 
P(T) bounds in every subspace. After the N subspaces have 
been bounded, the algorithm determines the bounds of P(T) in 
the complete input space. 

 

IV. SYSTEM-LEVEL VERIFICATION BASED ON INTERVALS 
The verification process begins from the behavioral 

description of the system. This specification is compiled in a 
control and data flow graph (CDFG) that contains only 
arithmetic (+, -, *) and relational operations, assertions and 
conditional statements (‘if’ constructions). At behavioral 
level, scheduling has not been performed, thus there is no state 
information in the graph. 

For every path, there will be ‘m’ conditions that have to be 
satisfied and ‘n’ assertions that have to be checked. These 
constraints are modeled as the polynomial Ci (condition i) and 
Aj (assertion j), thus:  

 
( )
( ) njXA

miXC

j

i
≤≤>
≤≤>

10
10

 

 
As we can see, all the constraints are converted into 

inequalities of the type “greater than”. 
The main goal of the verification algorithm is to find an 

input functional vector, X ∈ [XI, XS], which satisfies the ‘m’ 
(16) inequalities and violates at least one of the (17) 
assertions. A point U violates the assertions polynomial Aj(X) 
if Aj(U) > 0. In order to calculate the bounds of the 
polynomials Ci and Aj, the MODIA technique is used. 

Additionally, during interval analysis the MODIA 
technique evaluates every polynomial in N+2 points. Let Xk (1 
≤ k ≤ N+2) be the set of points that MODIA has evaluated. 
When MODIA bounds a path for a particular input interval 
and the interval and path have not been previously removed, a 
heuristic cost function (18) is defined: 

 
PRCost ×+×= 5.05.0  

 

Parameter ‘R’ measures the probability that the conditional 
constraints are verified. Parameter ‘P’ measures the 
probability that an assertion is violated.  

The complete pseudo-code of the verification algorithm is 
presented in the next section. 

A. Pseudo-code of the Algorithm 
The main goal of the algorithm is to find an input vector 

that violates an assertion. In order to do this the algorithm 
executes the next main loop for every assertion/property in the 
description. 

Enumerate all paths that reach the property 
Select the complete input space as input interval 
For every path  
 Evaluate the cost function (eq. 18) 
End for; 
Loop (while there is  a path to explore) 
 Select the path with maximum cost 
 Call path_evaluation function 
End loop; 
 
The path_evaluation function tries to find an input interval 
that violates the assertion/properties. Its pseudo-code is: 
 
Initialize the interval list with the complete input interval 
Loop(while there is an input interval in the interval list) 
 Select the input interval with maximum cost 
 Split the selected interval into 2 subintervals 
 Loop (for each subinterval) 
   Loop (for each condition) 
   Bound the polynomial with MODIA 
   If( lower bound of the conditional > 0)  then 
         Eliminate the condition 
   Elseif(upper bound of the conditional ≤ 0) then 
        Remove the input interval from the list 
       Next subinterval  iteration 
   Else (16) 
       Calculate the parameter R (17)    Endif; 
      End loop; 
                   Loop(for every assertion of the path) 
   Bound the polynomial with MODIA 
   If(a point violates one  assertion)  then 
    Counterexample detected 
   Elseif(upper bound of the assertion ≤ 0) then 
    Remove the input interval from the list 
    Next subinterval iteration 
   Else 
    Calculate the parameter P 
   Endif; 
  End loop; 
  Evaluate the cost function of equation 18 
  Insert the new interval in the interval  list 
 End loop; 
End loop; 
A counterexample cannot be found. 

(18)  
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V. EXPERIMENTAL RESULTS 
In order to validate the proposed technique, four behavioral 

system descriptions have been proposed. The test benches are 
data-dominated and they include non-linear behaviors and 
from 8-bit to 36-bit wide data path operations. Table III shows 
some properties of the selected test bench. 

The performance of the proposed methodology has been 
compared with two classical model checking tools (SPIN [4] 
and SMV[3]) and two commercial tools: a demo version of [6] 
(Commercial1) and a full version of [5] (Commercial2). The 
results are presented in the Table IV. The table shows the 
CPU time that the tools need to generate a correct answer. The 
term OFL (Out oF Limit) normally identifies situations in 
which the program was aborted because the computer does 
not have enough memory resources. The CPU times in Table 
IV correspond to seconds on a Pentium III with 256 MB of 
RAM at 300 Mhz under Windows 2000. In the case of the 
“Commercial2” tool, the CPU times correspond to Sun Fire 
V120 Ultra-Sparc IIi with 512 MB of RAM running at 550 
Mhz. 

The tool ‘SPIN’ is not able to automatically explore the 
input space, thus an exhaustive search procedure has been 
included in the system description. SMV and SPIN are able to 
check simple designs but they run “out of limits” (OFL) when 
the size of the input space grows. The “Commercial 1” tool 
(Verity-Check) is able to verify nearly all the proposed 
examples. Only in one case, the tool was not able to provide a 
solution after 12 hours of CPU time. The “Commercial 2” tool 
(FormalCheck) runs on a different platform (Sun 
Workstations) thus, its execution times are not totally 
equivalent to the other tools. This tool has problems with the 
“Space4” test bench because it is not able to handle relational 
operators with more than 30 bits.  

The proposed methodology spends less than a second to 
verify the proposed test bench. These results are better than 
other tools and only SPIN is able to obtain similar results in 
two examples. 

 

VI. CONCLUSIONS AND FUTURE WORK 
A method to check properties (or assertions) in behavioral-

level system specifications has been presented. The method is 
based on a modified interval analysis (MODIA) that can be 
directly computed over the CDFG, requiring (on average) the 
computation of about one new point per interval, reducing the 
classical overestimation problem of the IA techniques. 
Moreover, it is independent of the coding style of the 
algorithm. Using MODIA, the proposed verification algorithm 
explores the input space, looking for input intervals in which 
the violation of the assertion is more probable. The algorithm 
can also be used to automatically generate functional vectors 
that exercise predefined paths or properties. These vectors 
could be used to increase functional coverage metrics or 
replace random test generators. 

The proposed technique has been evaluated with different 
examples and it produces better results than commercial and 

classical research model checkers. 
The future work in this line is focused on two areas. The 

goal of the first is to extend the proposed methodology to 
handle RT-level descriptions. The second is to try to improve 
the methodology in order to avoid unrolling the loops and 
support more operators, concurrency, temporal expressions, 
and modular descriptions. 

 

Benchmark #input 
vectors #solutions #constraints Polynomial 

order 
Simple 2562 2509 3 2 
Conditional 2562 1 2 2 
Space3 2563 1 3 2 
Space4 2564 2 6 4 

Table III.  Test bench properties 
 

 
 SPIN SMV Comm. 1 Comm. 2 MODIA

Simple  1 s  84 s  9 s  7 s 1 s
Conditional  1 s OFL  120 s  100 s  1 s

Space3 OFL OFL  22796 s  1637 s 1 s
Space4 OFL OFL > 12 hours OFL  1 s

Table IV: Comparison with property checkers. 
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