
Abstract—With the increase of HW/SW system
complexity, effective mechanisms for HW/SW co-
simulation are required. The system bus is the
intermediate element in these communications, so
adequate bus modeling is critical. However, this
modeling has to be able to drive the system refinement
process as easily as possible. Different bus protocols at
different description levels have to be integrated and
modified in the processor and peripheral models. This
work proposes a generic bus model where OO
Programming inheritance techniques are used to
integrate it into the platform element descriptions. This
technique enables the substitution of the different bus
models at different abstraction levels in a semi-
automatic way.

I. INTRODUCTION·

The increase of complexity in electronic system design
has created new needs in development methodologies and
platform definitions. New designs require combining HW
and SW capabilities, considering multiprocessor
architectures on each chip (MpSoC).

Furthermore, new methodologies have evolved from
design flows where HW and SW are developed in separate
ways, to new complex flows considering HW and SW
refinement together. Functional and non-functional
parameters of the whole system have to be analyzed to
validate the system [1]. In this context, co-simulation has
become one of the most important issues in HW/SW co-
design of very complex systems[2]. Co-simulation requires
two main elements, a common environment where all HW
and SW components can be simulated and HW/SW
communication mechanisms.

To create environments where HW and SW can be
simulated together, some system-level languages have been
proposed. In this work, SystemC[3] will be used as the
underlying language. SystemC provides describing elements
to model components from system-level to RTL in the HW
area.

In this context, the SystemC development group is
creating a new standard called TLM2[4], which defines how
component communications have to be done at higher levels

· This work has been supported by the Spanish MICyT under the
MEDEA+ 2º 708 LoMoSA project and MEC through the
TEC2005-03301 project.

than RTL. These levels allow compatible and faster
communications, and thus they increase the simulation
speed of system co-design[5].

However, SW modeling is not directly covered in
SystemC. Although some features, such as dynamic threads
are provided, it is not enough to model SW components.
There are several approaches to integrate SW tasks in the
system simulation. One of the most popular solutions is to
use a processor model (ISS) to run the binary code of the
SW components, including the OS[6][7]. However, this
approach is not suitable for all development stages. At
higher levels, the execution of an ISS running all the binary
code is too slow. Thus, faster solutions are required.

Simulation of SW source code is the solution usually
proposed [7][8][9]. To do this, it is necessary to provide an
OS model and tools to obtain performance estimations
(mainly execution time estimations). Thus, a complete
processor model is not required to integrate the SW
execution and its effects on the system simulation.

In our approach this second technique has been
selected. A library called PERFidiX[9], which is capable of
making source-code execution time estimations and
annotations, has been used to obtain a timed simulation of
the SW code. Thus, HW and SW are co-simulated in a
common time axis, making their interactions occur
correctly. Processor accesses and interruptions are generated
and received at the correct times.

The library also extends SystemC to provide OS
features. Thus, it has been used to integrate the refined SW
code simulation in the SystemC model. The library can also
manage HW interruptions and allows the SW to access the
bus peripherals using HW addresses.

However, to model SW/HW accesses in a realistic
way, an adequate bus model is required. Directly connecting
the SW tasks to the peripherals, several effects such as
transfer delays or bus collisions, cannot be modeled. Several
generic bus models have been proposed for bus modeling
[10-17], covering all TLM abstraction levels. However,
these bus models usually present two drawbacks.

First, the bus protocol management has to be included
manually in all the peripherals. This means that all
communication refinement is manual. Furthermore, bus
models do not consider all effects of task executions, such
as preemptions during transfers.

Thus, in the present work a new methodology
including a generic bus model is proposed to solve these

Protocol Bus Modeling using inheritance with
TLM2.0

H. Posadas, E. Villar
University of Cantabria, GIM, TEISA Dept.
E.T.S.I.I.T. Avda. Los Castros s/n, 39005

Santander, Spain

{posadash, villar}@teisa.unican.es

M. Martínez
DS2 (Design of Systems on Silicon)

Robert Darwin 2, Parque Tecnológico,
Paterna, Spain

{marcos.martinez}@ds2.es

drawbacks. To do this, in section II the communication
requirements for HW/SW co-simulation are analyzed. In
section III, the proposed bus model is presented. Section IV
describes the use of TLM2 in the present work. In section
V, the technique for semi-automatically managing the bus
protocols in the platform elements is presented. Finally, an
application example is presented.

II. Related work and problem formulation
System co-design requires high description levels.

Modeling transfers at signal level is not suitable for
managing really complex systems. The resulting simulations
can be too slow for the first development stages.

To address this, Transfer Level Modeling (TLM)
techniques have been proposed [6]. Using these, each
transfer only requires a function call, instead of several
signal accesses. Thus, simulation speed is improved. Several
generic bus models using TLM features have been
developed [10-13], as long as specific bus ones, as AMBA
[14-16], CAN [16] or STBus [17] models.

Furthermore, TLM does not represent a single
abstraction level. Transfers can be applied at different levels
of abstraction. Usually three levels are defined [12]. In the
first one, bus-cycle accurate (BCA), each clock cycle is
modeled independently. Thus, each transfer requires a
different function call. This technique is suitable when
executing SW code in processor models. Each time the SW
wants to send a word through the bus, one transfer is done.

Given that ISSs of specific processors are required,
this level is commonly used with specific bus models. In
[14] a simple BCA bus for AMBA specification is
presented. [16] presents a technique called Result Oriented
Modeling(ROM), where internal bus states are omitted and
the end result is optimistically predicted. In [15], Cycle
Count Accurate at Transaction Boundaries (CCATB)
technique replaces the bus cycle accuracy. It tries to
increase the abstraction level a bit without losing the cycle
accuracy. In [13] a non-specific bus is proposed for early IP
integration, connecting 3rd party IPs.

In the other two higher abstraction levels, each data
transfer does not need to be considered independently.
Several data transfers can be modeled together. Each
function call can contain several words (payload) to be
transferred in a single operation. The difference between the
two levels is mainly that one considers transfer delay times
but the other does not. The timed one is called PVT
(Programmer View Timed) and the un-timed one is PV.

These transfers are more suitable for SW source-code
simulations than for an ISS. While source code transfers are
commonly done using buffers, assembler code only makes
single-word loads and stores. Thus, it cannot optimize the
use of payloads.

In [10] a PVT approach based in Master-Slave
libraries where the bus arbiter receives all requests is
presented. In [11] an efficient environment is presented,
based on Conservative Parallel Discrete Events, where the
SystemC simulation clock is ignored in the simulation.

However, none of these methods are oriented to
system refinement. All bus models are focused on the
improvement of a single design level. In fact, there are few
works oriented to models with several levels, where system

refinement is possible. In [12] a multiple-level bus model
for PV and BCA levels is presented. However, it is only
focused on the bus and not on the bus interfaces or the bus
protocol managers in the connected elements.

Furthermore, high-level bus models only model
payload transfers in burst mode. That is, where several
masters access the bus, a transfer cannot start until the
previous one ends. However, in real operation, transfers can
be interleaved, sharing the bus bandwidth.

Thus, although there have been several works on bus
modeling at low levels (including BCA), the use of payloads
can be improved. Thus, this work is focused on PV, and
especially on PVT. This is the reason why a source-code
approach has been selected to model SW instead of an ISS,
as explained in section I.

A TLM2 bus model has been developed to address this
issue. Although TLM2 is not a standard yet, it has been used
for three main reasons. First, it represents an advance from
TLM1 as a more complete specification, and more
describing elements are provided. Secondly, this work tries
to analyze the TLM version proposed, to check its benefits
and find its limitations before the final version will be
presented. Finally, the current draft can be considered
stable, so minimal modifications are expected in the final
version. Thus, minimal changes will be required to adapt it
to the final TLM2 draft.

Using the TLM2 terminology, for data transfers,
masters are the initiators, and slaves are the targets, but for
interruptions it is the opposite: slaves are the initiators and
masters the targets. Initiators call the transfer function and
targets implement that function, so both processor and
peripherals must implement some functions to allow
communications.

In PVT, delay times have to be considered. Delays in
transferring payloads can be caused by three elements: bus
propagation delay, transfer time (time of single transfer x
size of payload) and peripheral internal delay. Thus, a bus
access (Figure 1).

The problem is that the system state can change during
the transfer, modifying it. If the SW task that is performing
the transfer is preempted or killed during the access, it has
to be stopped or definitively aborted. To manage these
situations, a protocol has to be implemented in masters and
slaves. When a stop signal is received the slave has to
inform about the amount of information accepted
considering the time spent since the request arrived. When
the task is re-scheduled, the transfer will be resumed to send

Master
(Proc. IF) BUS TLM HW

Slave
Generic
Bus IF.

Applic
SW

Transport

Resume
Transport

Stop

End Transport

Delay

Delay

Fig. 1. Transfer modeling

the remaining information. When the task is killed, the
transfer is aborted and the information is lost.

To implement this in an easy and portable way, the use
of some interfaces is proposed. The use of these interfaces
will be presented in section V.

Furthermore, to allow correct modeling, the first word
of the payload should be received before considering the
transference time. Some peripherals operate each word at
the moment when it is received. The entire payload does not
have to be received before computing.

Furthermore, the bus model has to allow several
masters and slaves, as there can be several processors and
peripherals in the same bus.

III. INTERNAL BUS MODELING
The bus model implemented transports data and

interruptions among several masters and slaves (Figure 2).
To extract the target of each transfer, a memory map is
included in the model. For interruptions, the bus deploys the
request depending on the interruption number.

For data transfer, each transfer has a memory address
associated. The memory map contains the upper and lower
bounds of memory addresses for each peripheral and
identifies the target peripheral. Furthermore, data transfers
consider bandwidths and priorities to model the bus.

As explained above, time modeling is one of the most
interesting aspects in bus modeling. Although the
propagation and peripheral delays can be estimated
statically, the transfer time has to be defined during the
simulation. This time depends on the amount of information
transferred and the state of the bus. If there are several
transfers at the same time, they will share the bus, and so the
transfers will be slower.

To model these times, the bus proposed is based on
defining bandwidths. A maximum bandwidth value is
associated to each bus. Then, during the simulation this
bandwidth is shared out among all current transfers. First, it
is fairly divided among transfers with maximum priority
depending on the bandwidth required by each transfer.
Then, the remaining bandwidth is delivered to the remaining
transfers depending on their priorities and requirements.

The required bandwidth is obtained considering the
amount of information to be transferred and the ideal time
of the transfer. For example, in a simple transfer, the
processor will make a request to the bus for size “S” and
time “0”. That is, the processor wants the transfer to be
immediate. However, a common bus does not allow this.

Thus, the corresponding peripheral receives a request of size
“S” and time “S/B”, where “B” is the available bandwidth
of the bus.

To divide the bandwidth correctly, each time a transfer
ends or a new one starts, all current transfers with the same
or lower priority are stopped. To stop the transfers, the same
protocol explained in section II is used. Thus no new
functionality is required for internal bus modeling. Then, the
bandwidth is shared out again and the active transfers are
resumed.

This technique also enables the chaining of buses. The
request received by one bus considers the available
bandwidth in the previous ones. Furthermore, this technique
models the inefficiency provoked when connecting slower
buses to faster ones.

IV. USE OF TLM2.0 INTERFACES
To model both data transfers and interruptions,

TLM2.0 interfaces and structs have been used.

A. Data transfers
To model bus transfers one of the standard SystemC

TLM2 interfaces, “tlm_annotated_transport_if”, has been
used. The “transport (request, response, time)” function is
called from the processor interface and served by the
peripherals.

For the function parameters, the TLM2 structs
“tlm_request struct”, and “tlm_response struct” have been
used.

- tlm_request parameters:

 Mode: REGULAR, CONTROL and DEBUG

o Regular mode: Data transfers

o Control mode: Access to peripheral control and
status

 Address (int): Uses the peripheral base address to
identify the peripheral. Each bus model contains a
memory map that contains the peripheral address
and allows the bus to send each request to the
specified peripheral. Memory addresses are loaded
at the beginning of the simulation. Hot-plugging is
also allowed. However, a hot-plug will probably
require re-initializing the corresponding OS driver
model. Plug and play mechanisms are not
completely developed.

 Data (void*): Information transferred

 Priority: Used to assign the bus bandwidth when
several transfers are done in parallel. The last bit
has been used to indicate if the transfer is normal
or in burst mode.

 Block mode: Informs about whether all words of
the package will be sent to the same address or the
address should be increased on each single word
transferred. (Not implemented in the example)

 Others: command type (Read/write), data size,
transference id and source id are also used.

- tlm_response parameters:

Master
(Proc. IF)

BUS TLM2

HW
Slave

 Generic
BUS IF.

Applic
SW Memory

Map

Bandwidth -
Priorities

Interrupt

DMA

Master
(Proc. IF)

Applic
SW

HW
Slave

 Generic
BUS IF.

Fig. 2. TLM2 Bus model

 Status: ok, error or no_response (peripheral
informs that transference size = 0)

 Data, Priority, Size, Transference id, Source id are
used as in the tlm_request.

B. Interruptions
To transfer interruptions from the peripherals to the

masters, the “tlm_nonblocking_put_if” interface has been
used. Specifically the function “nb_put(irq)” is provided by
the processor bus interface. The interruption is supposed not
to require time to be delivered to the corresponding
processor. This interface also contains two more functions.
The first one is the “nb_can_put(irq)” that always return
true, because it is considered that an IRQ can always be
sent. The other one is “ok_to_put(irq)” that returns an event
when the interrupt can be sent. However, it is not required
as interruptions can always be sent.

This function calls the IRQ handler (creating a new
POSIX process), informs the scheduler whether to pre-empt
the current task, and asks the annotation engine to stop the
time annotation of the pre-empted task. This solution avoids
creating a new SC_THREAD to wait for new interruption
calls. Instead, the “nb_put” function is called directly by the
bus, using an “export” port, and the IRQ manager is
executed.

C. Non standard TLM2 functions
Sometimes, it will be necessary to abort or stop a

previously decided transfer, because of a change on the
system status. Thus, abort and stop functions have been
added to the bus interface.

V. BUS INTERFACES
However, the most tiresome problem when integrating

a bus model into a system description is integrating the bus
interfaces and protocols into all components during the
different steps of the refinement flow. Each time a new bus
model is required, all the peripheral connections have to be
rewritten.

 When analyzing the peripheral interfaces of all
components of the same bus, it is usual that they are mostly
similar, and only a few of them present some differences.
This means that the main part of the protocol manager can
be reused among the different modules.

Thus, the first possibility could be to integrate part of
the protocol management within the bus model. However,
this is unsuitable for two reasons. First, the protocol
management will be part of the peripheral when it is
implemented, so this functionality should be part of the
component, and not of the channel. Secondly, this does not
allow ad-hoc modifications for certain peripherals that
require a specific protocol implementation.

The proposed methodology is presented in figure 3.
First, this methodology creates a new sc_module for each
abstraction level (“pvt_prot_manager” or
“pv_prot_manager”) that integrates the implementation of
the TLM interfaces, defining the required ports and protocol
functions to connect it to the bus. Furthermore, it provides
the designer with communication functions that are
independent of the internal bus protocol, to connect the
peripheral descriptions and this new module.

The new sc_module has to be inherited in all
peripherals that want to access the bus (“per_description”).
Thus, neither the ports nor the protocol functions have to be
described explicitly in each module. They are inherited.

This technique presents one advantage with respect to
using intermediate modules as transactors. Those
peripherals that require modifying some of the standard
protocol implementation can redefine the specific part and
reuse the rest by overloading the corresponding function. It
is not required to create a different transactor type for each
especial bus communication.

The inherited module also provides the designer with
an interface that is independent of the bus modeling level.
Thus, a PV, PVT or BCA bus model can be used in the
system simulation just replacing the inheritance.

To maintain the TLM2 standard interfacing
capabilities, the connections between the protocol managers
and the bus models (“pvt_bus” or “pv_bus”) require an
interface form the TLM2 standard. Thus, the protocol
manager inherits the standard “tlm_transport_if” interface.

Apart from that, the port binding technique is
improved. First, only some connections between the bus and
the peripherals ports have to be done manually if the change
of abstraction level requires modifying the number of bus
ports. However, even this requirement can be automatically
solved. To avoid this last manual modification, another
specific function has been included in the interface module.
This function receives a pointer to the bus as a parameter,
and internally makes the port binding. Each interface
module inherited at each modeling level has its own binding
function, so the specific ports for this level are automatically
bound.

To allow connection between the HW description and
the bus interface, a new set of functions is defined in the
pv/pvt_periph_if . This functions connects the peripheral
description (“per_description”) and the bus protocol
manager inherited (“pvt_per_manager” or
”pv_per_manager”). This set is used internally to the HW
component. The use of this new set of functions, allows
changing the inheritance to modify the communication level
of abstraction without modifying the HW description. The
set provides the functions presented in table 1.

pvt_periph_If pvt_bus_If pv_periph_If pv_bus_If

tlm_transport_if tlm_nb_put_if

PVT MODEL PV MODEL
pvt_prot_manager pvt_bus Ports pv_prot_manager pv_bus Ports

per_description
(bus_independent)

inheritance port connection export

Fig. 3. Inheritance graph for bus connection

 The “read” and “write” functions return and put the
data transferred by the bus at the indicated address.
Functions “wait_read” and “wait_write” block the task until

a read or write access is performed by the bus. An argument
indicates if the function has to be unblocked at the
beginning or at the end of the transference. Finally,
“send_interrupt” can be used to send interruptions to the
processors.

To automatically introduce these changes new macros
following and extending the SystemC philosophy have been
created. Thus, replacing the original SystemC macros by
these new ones, the bus interface is automatically integrated
into the module. These macros can be shown in table 2.

Another interesting point is the implementation of the
functions to manage the bus protocol, especially the
operation at aborts and stops. These functions are used to
allow modeling task preemptions during payload transfers.
PVT transfers implies considering transfer time specially
with large payloads. The time required is annotated using a
wait statement with the expected time. However, during this
time, an unexpected event can make the payload transfer to
be stopped or aborted. For example, it the SW task which is
making the transfer is preempted or cancelled, the
transaction, and thus, the wait statement, have to be
cancelled.

At aborts, the transfer finishes, and the peripheral
status is reset to accept new transfers. The peripheral answer
is not important. Thus, the abort execution is done in zero
time.

Stops are more complex. First, the peripheral has to
inform about the amount of information it has accepted
before the stop event. The peripheral answer can require
some time, so the stop is not immediate. Furthermore, to
allow continuing the transfer, the information received has
to be stored in the peripheral. Peripheral state is changed to
"in transfer" to avoid other incoming messages being
considered as the continuation of the stopped
communication, producing an incorrect operation.

The interface for bus masters is similar to the one
presented above for peripherals. Instead of implementing

the “transport” function, it includes the functions for
interrupt management. Furthermore, it is connected to the
OS model, so the user does not access it directly.

Finally, modules that are both masters and slaves at
the same time, such as DMAs, can include both interfaces to
allow sending and receiving requests.

The last element to be considered is how time delays
are annotated in the transfer modeling. To maintain
generality, the annotation has to be done when the values
are received. Peripherals can decide to operate when each
value is received or only when the entire payload has been
accepted. That is, when the petition starts or after the wait
time.

This is easy to model in write accesses, because the
peripheral receives the request with the information, waits
the corresponding time and returns an acknowledgement.
However, in read accesses it is more complicated. The
master makes the request and the slave sends the
information. Thus, if the time wait is implemented in the
slave, the master only receives the information at the end of
the transfer, so it cannot operate during the transfer with the
data received. If the wait statement is placed in the master,
neither the slave nor the bus has information about the status
of the current transfer.

To address this issue, read transfers have been
implemented in a two-step sequence. First, the read is
performed in zero time, and then a new special request is
made. The first one performs the transfer, and sends the
information to the master. The second request has no
functional effect; it is used only to make the time
annotation. The bus interfaces automatically manages these
two-step transfers, so they are hidden to the user.

VI. Example
To verify the technique proposed, an example has

been implemented. This example models a Vocoder
GSM[18]. The Vocoder is divided into two parts, one
modeling the coder and the other one including the decoder.

Each part has a bus with several elements connected
(figure 4). The bus master is a processor. This processor
executes the SW code that models the coding or decoding
operations. To run the SW code, the tool PERFidiX has

Proc. If.

BUS BUS

Memory

Proc. If.

Comm If. Comm If. I/O I/O

Memory

P2P Channel

Proc.-PERFidiX If.

PERFidiX

Bus If. Bus If.

Bus If. Bus If. Bus If. Bus If.

Irq Irq

IrqIrq IrqIrq

Data

Data Data Data

Data

Data

Data Data

Coder Decoder

Fig. 4. GSM Vocoder model architecture

TABLE II
NEW MACROS TO INTRODUCE THE BUS INTERFACE

#define BUS_MODULE(name) struct name: tlm_bus_module
#define BUS_CTOR(name) … name(…): tlm_bus_module(...)

TABLE I
BUS INTERFACE SC_MODULE

class tlm_bus_module: public sc_module{
 // Ports and Ctor
 void bind_bus(bus){...}
 ...
 //Bus Protocol management
 void transport (...){...}
 ...
 // HW interface
 int read (addr,data,size){...}
 int write (addr,data,size){...}

 int wait_read (bool){...}
 int wait_write (bool){...}

 int send_interrupt (int irq){...}
 ...
}

been used. This tool provides an OS model and obtains a
timed simulation from the un-timed SW code.

The SW code is stored in a memory connected to the
same bus. Although the source-code simulation does not
require a memory model to run, these bus accesses have
been modeled. The effect of these accesses can be really
important, especially if there are several masters in the same
bus, because collisions can reduce the execution speed. To
model them, the number of load and store operations is
dynamically estimated at the same time the code is executed
based on statistical information.

The information received by the coder is generated in
another peripheral that models the system input interface
(I/O). The SW calls this peripheral when a new value must
be coded. In the decoder case, the output is sent to another
peripheral. This peripheral models the system output. It
receives the decoder values as they are generated, and
verifies if they are correct, comparing them with the original
sequence provided to the coder.

Finally, a communication channel connects the coder
and decoder. The selected channel is a NoC. To do that, a
point-to-point channel has been integrated in the system.
This channel is connected to a pair of communication
peripherals, one placed on each bus.

Summarizing, there are two nodes with one bus, one
processor and three peripherals, connected using the
inherited interfaces. The operation is the following: The
coder reads the input values from the I/O peripheral,
encodes them and sends the codified values to the point-to-
point channel. The decoder receives the values de-coded
and transfers the results to the output peripheral. Once the

decoder receives each coded frame, it sends and
acknowledgement to the channel. Communication
peripherals inform the software that new information is
received using interruptions. PV and PVT bus models have
been used. The substitution does not require modifications
in the example code, only substituting the bus and the
module inheritance in the macros in table II.

Once the simulation has finished the bus reports the
graph with the bus occupation, as can be seen in figure 5.
There, all transfers done through the bus can be shown,
including its duration and bandwidth used.

VI. Conclusions
This paper proposes a technique that allows design

refinement at different TLM levels. It considers both the bus
model and the peripheral bus protocol managers. This
allows easy and partially automatic refinement of HW
component bus interfaces. Furthermore, the performance of
the SW tasks can be easily obtained with different
requirements of accuracy/speed, by automatically modifying
the bus abstraction level.

The bus extends the common functionality of PV/PVT
bus models allowing interleaved payload transfers,
considering bus bandwidths and allowing dynamically
stopping and aborting transfers. This increases the accuracy
of the model, especially when SW models consider
preemption and interrupts during payload transfers.

To allow semiautomatic refinement in the bus
connections, inheritance techniques have proven to be
effective to replace the required bus protocol managers at
the bus peripherals in an easy and fast way. Using a simple
interface within the peripheral, common to all TLM
description levels, the functionality required to perform
requests and responses through the bus is automatically
provided.

VI. References
[1] A. Sangiovanni-Vincentelli and G. Martin: Platform-based
design and software design methodology for embedded systems,
IEEE Design and Test of Computers. Nov.-Dec., 2001
[2] A.A. Jerraya, S. Yoo, D. Verkest and N. When: “Embedded
Software for SoC”, Springer, 2003
[3] IEEE 1666 standard, available at
http://www.systemc.org
[4] OSCI Draft for SystemC TLM2, available at
http://www.systemc.org
[5] F. Ghenassia (Ed.): “Transaction-Level Modeling with
SystemC”, Springer, 2005.
[6] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi and M.
Ponzino: “SystemC cosimulation and emulation of multiprocessor
SoC design”, IEEE Computer, April, 2003.
[7] Y. Yi, D. Kim and S. Ha: “Fast and time-accurate cosimulation
with OS scheduler modeling”, Design Automation of Embedded
Systems, N.8, Springer, 2003
[8]S. Yoo, G. Nicolescu, LG. Gauthier and A.A. Jerraya:
“Automatic generation of fast timed simulation models for
operating systems in SoC design”, Proceedings of the Design,
Automation and Test Conference, IEEE, 2002.
[9]H. Posadas, J. Ádamez, P. Sánchez, E. Villar and F. Blasco:
“POSIX modeling in SystemC”, Proceedings of the Asian, South-
Pacific Design, Automation Conference, IEEE, 2006.
[10] J. Lee & S. Park, “Orthogonalized communication
architecture for MP-SoC with global bus”, System-on-Chip for
Real-time Applications, 2005
[11] E. Viaud, F. Pecheux & A. Greiner: “An Efficient TLM/T
Modeling and Simulation Environment Based on Conservative
Parallel Discrete Event Principles”, DATE 2006
[12] W. Klingauf, R. Gunzel, O. Bringmann, P. Parfuntseu & M.
Burton, “GreenBus - a generic interconnect fabric for transaction
level modelling”, DAC 2006
[13] A. Hoffmann, R. Langridge, D. Machin, “SoC integration of
programmable cores”, Int. Symp. on System-on-Chip, 2003
[14] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi,
C.Turchetti : “Transaction-level models for AMBA bus
architecture using SystemC 2.0”, DATE, 2003.
[15] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Fast exploration of
bus-based on-chip communication architectures”, CODES + ISSS
2004.
[16] G. Schirner, R. Domer: “Result Oriented Modeling, a Novel
Technique for Fast and Accurate TLM”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits, Volume PP, Issue
99, 2007
[17] I. Moussa, T. Grellier, G. Nguyen, “Exploring SW
performance using SoC transaction-level modeling”, DATE.2003
[18] GSM Specification: EN 301.245, ETSI, December, 1997.

Fig. 5 PVT and PV bus utilization graphs

