
Abstract—With the increase of HW/SW system 
complexity, effective mechanisms for HW/SW co-
simulation are required. The system bus is the 
intermediate element in these communications, so 
adequate bus modeling is critical. However, this 
modeling has to be able to drive the system refinement 
process as easily as possible. Different bus protocols at 
different description levels have to be integrated and 
modified in the processor and peripheral models. This 
work proposes a generic bus model where OO 
Programming inheritance techniques are used to 
integrate it into the platform element descriptions. This 
technique enables the substitution of the different bus 
models at different abstraction levels in a semi-
automatic way. 
 
I. INTRODUCTION· 

The increase of complexity in electronic system design 
has created new needs in development methodologies and 
platform definitions. New designs require combining HW 
and SW capabilities, considering multiprocessor 
architectures on each chip (MpSoC).  

Furthermore, new methodologies have evolved from 
design flows where HW and SW are developed in separate 
ways, to new complex flows considering HW and SW 
refinement together. Functional and non-functional 
parameters of the whole system have to be analyzed to 
validate the system [1].  In this context, co-simulation has 
become one of the most important issues in HW/SW co-
design of very complex systems[2]. Co-simulation requires 
two main elements, a common environment where all HW 
and SW components can be simulated and HW/SW 
communication mechanisms.  

To create environments where HW and SW can be 
simulated together, some system-level languages have been 
proposed. In this work, SystemC[3] will be used as the  
underlying language. SystemC provides describing elements 
to model components from system-level to RTL in the HW 
area.  

In this context, the SystemC development group is 
creating a new standard called TLM2[4], which defines how 
component communications have to be done at higher levels 
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than RTL. These levels allow compatible and faster 
communications, and thus they increase the simulation 
speed of system co-design[5]. 

However, SW modeling is not directly covered in 
SystemC. Although some features, such as dynamic threads 
are provided, it is not enough to model SW components. 
There are several approaches to integrate SW tasks in the 
system simulation. One of the most popular solutions is to 
use a processor model (ISS) to run the binary code of the 
SW components, including the OS[6][7]. However, this 
approach is not suitable for all development stages. At 
higher levels, the execution of an ISS running all the binary 
code is too slow. Thus, faster solutions are required. 

Simulation of SW source code is the solution usually 
proposed [7][8][9]. To do this, it is necessary to provide an 
OS model and tools to obtain performance estimations 
(mainly execution time estimations). Thus, a complete 
processor model is not required to integrate the SW 
execution and its effects on the system simulation. 

In our approach this second technique has been 
selected. A library called PERFidiX[9], which is capable of 
making source-code execution time estimations and 
annotations, has been used to obtain a timed simulation of 
the SW code. Thus, HW and SW are co-simulated in a 
common time axis, making their interactions occur 
correctly. Processor accesses and interruptions are generated 
and received at the correct times. 

The library also extends SystemC to provide OS 
features. Thus, it has been used to integrate the refined SW 
code simulation in the SystemC model. The library can also 
manage HW interruptions and allows the SW to access the 
bus peripherals using HW addresses. 

However, to model SW/HW accesses in a realistic 
way, an adequate bus model is required. Directly connecting 
the SW tasks to the peripherals, several effects such as 
transfer delays or bus collisions, cannot be modeled. Several 
generic bus models have been proposed for bus modeling 
[10-17], covering all TLM abstraction levels. However, 
these bus models usually present two drawbacks.  

First, the bus protocol management has to be included 
manually in all the peripherals. This means that all 
communication refinement is manual. Furthermore, bus 
models do not consider all effects of task executions, such 
as preemptions during transfers. 

Thus, in the present work a new methodology 
including a generic bus model is proposed to solve these 
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drawbacks. To do this, in section II the communication 
requirements for HW/SW co-simulation are analyzed. In 
section III, the proposed bus model is presented. Section IV 
describes the use of TLM2 in the present work. In section 
V, the technique for semi-automatically managing the bus 
protocols in the platform elements is presented. Finally, an 
application example is presented. 

II. Related work and problem formulation 
System co-design requires high description levels. 

Modeling transfers at signal level is not suitable for 
managing really complex systems. The resulting simulations 
can be too slow for the first development stages.  

To address this, Transfer Level Modeling (TLM) 
techniques have been proposed [6]. Using these, each 
transfer only requires a function call, instead of several 
signal accesses. Thus, simulation speed is improved. Several 
generic bus models using TLM features have been 
developed [10-13], as long as specific bus ones, as AMBA 
[14-16], CAN [16] or  STBus [17] models. 

Furthermore, TLM does not represent a single 
abstraction level. Transfers can be applied at different levels 
of abstraction. Usually three levels are defined [12]. In the 
first one, bus-cycle accurate (BCA), each clock cycle is 
modeled independently. Thus, each transfer requires a 
different function call. This technique is suitable when 
executing SW code in processor models. Each time the SW 
wants to send a word through the bus, one transfer is done.   

Given that ISSs of specific processors are required, 
this level is commonly used with specific bus models. In 
[14] a simple BCA bus for AMBA specification is 
presented. [16] presents a technique called Result Oriented 
Modeling(ROM), where internal bus states are omitted and 
the end result is optimistically predicted. In [15], Cycle 
Count Accurate at Transaction Boundaries (CCATB) 
technique replaces the bus cycle accuracy. It tries to 
increase the abstraction level a bit without losing the cycle 
accuracy. In [13] a non-specific bus is proposed for early IP 
integration, connecting 3rd party IPs.  

In the other two higher abstraction levels, each data 
transfer does not need to be considered independently. 
Several data transfers can be modeled together. Each 
function call can contain several words (payload) to be 
transferred in a single operation. The difference between the 
two levels is mainly that one considers transfer delay times 
but the other does not. The timed one is called PVT 
(Programmer View Timed) and the un-timed one is PV. 

These transfers are more suitable for SW source-code 
simulations than for an ISS. While source code transfers are 
commonly done using buffers, assembler code only makes 
single-word loads and stores. Thus, it cannot optimize the 
use of payloads.  

In [10] a PVT approach based in Master-Slave 
libraries where the bus arbiter receives all requests is 
presented. In [11] an efficient environment is presented, 
based on Conservative Parallel Discrete Events, where the 
SystemC simulation clock is ignored in the simulation.  

However, none of these methods are oriented to 
system refinement. All bus models are focused on the 
improvement of a single design level. In fact, there are few 
works oriented to models with several levels, where system 

refinement is possible. In [12] a multiple-level bus model 
for PV and BCA levels is presented. However, it is only 
focused on the bus and not on the bus interfaces or the bus 
protocol managers in the connected elements. 

Furthermore, high-level bus models only model 
payload transfers in burst mode. That is, where several 
masters access the bus, a transfer cannot start until the 
previous one ends. However, in real operation, transfers can 
be interleaved, sharing the bus bandwidth. 

Thus, although there have been several works on bus 
modeling at low levels (including BCA), the use of payloads 
can be improved. Thus, this work is focused on PV, and 
especially on PVT. This is the reason why a source-code 
approach has been selected to model SW instead of an ISS, 
as explained in section I. 

A TLM2 bus model has been developed to address this 
issue. Although TLM2 is not a standard yet, it has been used 
for three main reasons. First, it represents an advance from 
TLM1 as a more complete specification, and more 
describing elements are provided. Secondly, this work tries 
to analyze the TLM version proposed, to check its benefits 
and find its limitations before the final version will be 
presented. Finally, the current draft can be considered 
stable, so minimal modifications are expected in the final 
version. Thus, minimal changes will be required to adapt it 
to the final TLM2 draft. 

Using the TLM2 terminology, for data transfers, 
masters are the initiators, and slaves are the targets, but for 
interruptions it is the opposite: slaves are the initiators and 
masters the targets. Initiators call the transfer function and 
targets implement that function, so both processor and 
peripherals must implement some functions to allow 
communications. 

In PVT, delay times have to be considered. Delays in 
transferring payloads can be caused by three elements: bus 
propagation delay, transfer time (time of single transfer x 
size of payload) and peripheral internal delay. Thus, a bus 
access (Figure 1). 

The problem is that the system state can change during 
the transfer, modifying it. If the SW task that is performing 
the transfer is preempted or killed during the access, it has 
to be stopped or definitively aborted. To manage these 
situations, a protocol has to be implemented in masters and 
slaves. When a stop signal is received the slave has to 
inform about the amount of information accepted 
considering the time spent since the request arrived. When 
the task is re-scheduled, the transfer will be resumed to send 
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the remaining information. When the task is killed, the 
transfer is aborted and the information is lost. 

To implement this in an easy and portable way, the use 
of some interfaces is proposed. The use of these interfaces 
will be presented in section V. 

Furthermore, to allow correct modeling, the first word 
of the payload should be received before considering the 
transference time. Some peripherals operate each word at 
the moment when it is received. The entire payload does not  
have to be received before computing. 

Furthermore, the bus model has to allow several 
masters and slaves, as there can be several processors and 
peripherals in the same bus. 

III. INTERNAL BUS MODELING 
The bus model implemented transports data and 

interruptions among several masters and slaves (Figure 2). 
To extract the target of each transfer, a memory map is 
included in the model. For interruptions, the bus deploys the 
request depending on the interruption number. 

For data transfer, each transfer has a memory address 
associated. The memory map contains the upper and lower 
bounds of memory addresses for each peripheral and 
identifies the target peripheral. Furthermore, data transfers 
consider bandwidths and priorities to model the bus. 

As explained above, time modeling is one of the most 
interesting aspects in bus modeling. Although the 
propagation and peripheral delays can be estimated 
statically, the transfer time has to be defined during the 
simulation. This time depends on the amount of information 
transferred and the state of the bus. If there are several 
transfers at the same time, they will share the bus, and so the 
transfers will be slower.  

To model these times, the bus proposed is based on 
defining bandwidths. A maximum bandwidth value is 
associated to each bus. Then, during the simulation this 
bandwidth is shared out among all current transfers. First, it 
is fairly divided among transfers with maximum priority 
depending on the bandwidth required by each transfer. 
Then, the remaining bandwidth is delivered to the remaining 
transfers depending on their priorities and requirements. 

The required bandwidth is obtained considering the 
amount of information to be transferred and the ideal time 
of the transfer. For example, in a simple transfer, the 
processor will make a request to the bus for size “S” and 
time “0”. That is, the processor wants the transfer to be 
immediate. However, a common bus does not allow this. 

Thus, the corresponding peripheral receives a request of size 
“S” and time “S/B”, where “B” is the available bandwidth 
of the bus. 

To divide the bandwidth correctly, each time a transfer 
ends or a new one starts, all current transfers with the same 
or lower priority are stopped. To stop the transfers, the same 
protocol explained in section II is used. Thus no new 
functionality is required for internal bus modeling. Then, the 
bandwidth is shared out again and the active transfers are 
resumed. 

This technique also enables the chaining of buses. The 
request received by one bus considers the available 
bandwidth in the previous ones. Furthermore, this technique 
models the inefficiency provoked when connecting slower 
buses to faster ones. 

IV. USE OF TLM2.0 INTERFACES 
To model both data transfers and interruptions, 

TLM2.0 interfaces and structs have been used. 

A. Data transfers 
To model bus transfers one of the standard SystemC 

TLM2 interfaces, “tlm_annotated_transport_if”, has been 
used. The “transport (request, response, time)” function is 
called from the processor interface and served by the 
peripherals.  

For the function parameters, the TLM2 structs 
“tlm_request struct”, and “tlm_response struct” have been 
used. 

- tlm_request parameters:  

 Mode: REGULAR, CONTROL and DEBUG 

o Regular mode: Data transfers 

o Control mode: Access to peripheral control and 
status 

 Address (int): Uses the peripheral base address to 
identify the peripheral. Each bus model contains a 
memory map that contains the peripheral address 
and allows the bus to send each request to the 
specified peripheral. Memory addresses are loaded 
at the beginning of the simulation. Hot-plugging is 
also allowed. However, a hot-plug will probably 
require re-initializing the corresponding OS driver 
model. Plug and play mechanisms are not 
completely developed. 

 Data (void*): Information transferred 

 Priority: Used to assign the bus bandwidth when 
several transfers are done in parallel. The last bit 
has been used to indicate if the transfer is normal 
or in burst mode. 

 Block mode: Informs about whether all words of 
the package will be sent to the same address or the 
address should be increased on each single word 
transferred. (Not implemented in the example) 

 Others: command type (Read/write), data size, 
transference id and source id are also used. 

- tlm_response parameters: 
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 Status: ok, error or no_response (peripheral 
informs that transference size = 0) 

 Data, Priority, Size, Transference id, Source id are 
used as in the tlm_request. 

B. Interruptions 
To transfer interruptions from the peripherals to the 

masters, the “tlm_nonblocking_put_if” interface has been 
used. Specifically the function “nb_put(irq)” is provided by 
the processor bus interface. The interruption is supposed not 
to require time to be delivered to the corresponding 
processor. This interface also contains two more functions. 
The first one is the “nb_can_put(irq)” that always return 
true, because it is considered that an IRQ can always be 
sent. The other one is “ok_to_put(irq)” that returns an event 
when the interrupt can be sent. However, it is not required 
as interruptions can always be sent. 

This function calls the IRQ handler (creating a new 
POSIX process), informs the scheduler whether to pre-empt 
the current task, and asks the annotation engine to stop the 
time annotation of the pre-empted task. This solution avoids 
creating a new SC_THREAD to wait for new interruption 
calls. Instead, the “nb_put” function is called directly by the 
bus, using an “export” port, and the IRQ manager is 
executed.  

C. Non standard TLM2 functions 
Sometimes, it will be necessary to abort or stop a 

previously decided transfer, because of a change on the 
system status. Thus, abort and stop functions have been 
added to the bus interface. 

V. BUS INTERFACES 
However, the most tiresome problem when integrating 

a bus model into a system description is integrating the bus 
interfaces and protocols into all components during the 
different steps of the refinement flow. Each time a new bus 
model is required, all the peripheral connections have to be 
rewritten.  

 When analyzing the peripheral interfaces of all 
components of the same bus, it is usual that they are mostly 
similar, and only a few of them present some differences. 
This means that the main part of the protocol manager can 
be reused among the different modules.  

Thus, the first possibility could be to integrate part of 
the protocol management within the bus model. However, 
this is unsuitable for two reasons. First, the protocol 
management will be part of the peripheral when it is 
implemented, so this functionality should be part of the 
component, and not of the channel. Secondly, this does not 
allow ad-hoc modifications for certain peripherals that 
require a specific protocol implementation. 

The proposed methodology is presented in figure 3. 
First, this methodology creates a new sc_module for each 
abstraction level (“pvt_prot_manager” or 
“pv_prot_manager”) that integrates the implementation of 
the TLM interfaces, defining the required ports and protocol 
functions to connect it to the bus. Furthermore, it provides 
the designer with communication functions that are 
independent of the internal bus protocol, to connect the 
peripheral descriptions and this new module.  

The new sc_module has to be inherited in all 
peripherals that want to access the bus (“per_description”). 
Thus, neither the ports nor the protocol functions have to be 
described explicitly in each module. They are inherited.  

This technique presents one advantage with respect to 
using intermediate modules as transactors. Those 
peripherals that require modifying some of the standard 
protocol implementation can redefine the specific part and 
reuse the rest by overloading the corresponding function. It 
is not required to create a different transactor type for each 
especial bus communication. 

The inherited module also provides the designer with 
an interface that is independent of the bus modeling level. 
Thus, a PV, PVT or BCA bus model can be used in the 
system simulation just replacing the inheritance.  

To maintain the TLM2 standard interfacing 
capabilities, the connections between the protocol managers 
and the bus models (“pvt_bus” or “pv_bus”) require an 
interface form the TLM2 standard. Thus, the protocol 
manager inherits the standard “tlm_transport_if” interface.  

Apart from that, the port binding technique is 
improved. First, only some connections between the bus and 
the peripherals ports have to be done manually if the change 
of abstraction level requires modifying the number of bus 
ports. However, even this requirement can be automatically 
solved. To avoid this last manual modification, another 
specific function has been included in the interface module. 
This function receives a pointer to the bus as a parameter, 
and internally makes the port binding. Each interface 
module inherited at each modeling level has its own binding 
function, so the specific ports for this level are automatically 
bound.  

To allow connection between the HW description and 
the bus interface, a new set of functions is defined in the 
pv/pvt_periph_if . This functions connects the peripheral 
description (“per_description”) and the bus protocol 
manager inherited (“pvt_per_manager” or 
”pv_per_manager”). This set is used internally to the HW 
component. The use of this new set of functions, allows 
changing the inheritance to modify the communication level 
of abstraction without modifying the HW description. The 
set provides the functions presented in table 1. 

pvt_periph_If pvt_bus_If pv_periph_If pv_bus_If 

tlm_transport_if tlm_nb_put_if 

PVT  MODEL PV  MODEL 
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 The “read” and “write” functions return and put the 
data transferred by the bus at the indicated address. 
Functions “wait_read” and “wait_write” block the task until 

a read or write access is performed by the bus. An argument 
indicates if the function has to be unblocked at the 
beginning or at the end of the transference. Finally, 
“send_interrupt” can be used to send interruptions to the 
processors.  

To automatically introduce these changes new macros 
following and extending the SystemC philosophy have been 
created. Thus, replacing the original SystemC macros by 
these new ones, the bus interface is automatically integrated 
into the module. These macros can be shown in table 2. 

Another interesting point is the implementation of the 
functions to manage the bus protocol, especially the 
operation at aborts and stops. These functions are used to 
allow modeling task preemptions during payload transfers. 
PVT transfers implies considering transfer time specially 
with large payloads. The time required is annotated using a 
wait statement with the expected time. However, during this 
time, an unexpected event can make the payload transfer to 
be stopped or aborted. For example, it the SW task which is 
making the transfer is preempted or cancelled, the 
transaction, and thus, the wait statement, have to be 
cancelled. 

At aborts, the transfer finishes, and the peripheral 
status is reset to accept new transfers. The peripheral answer 
is not important. Thus, the abort execution is done in zero 
time.  

Stops are more complex. First, the peripheral has to 
inform about the amount of information it has accepted 
before the stop event. The peripheral answer can require 
some time, so the stop is not immediate. Furthermore, to 
allow continuing the transfer, the information received has 
to be stored in the peripheral. Peripheral state is changed to 
"in transfer" to avoid other incoming messages being 
considered as the continuation of the stopped 
communication, producing an incorrect operation. 

The interface for bus masters is similar to the one 
presented above for peripherals. Instead of implementing 

the “transport” function, it includes the functions for 
interrupt management. Furthermore, it is connected to the 
OS model, so the user does not access it directly. 

Finally, modules that are both masters and slaves at 
the same time, such as DMAs, can include both interfaces to 
allow sending and receiving requests. 

The last element to be considered is how time delays 
are annotated in the transfer modeling. To maintain 
generality, the annotation has to be done when the values 
are received. Peripherals can decide to operate when each 
value is received or only when the entire payload has been 
accepted. That is, when the petition starts or after the wait 
time. 

This is easy to model in write accesses, because the 
peripheral receives the request with the information, waits 
the corresponding time and returns an acknowledgement. 
However, in read accesses it is more complicated. The 
master makes the request and the slave sends the 
information. Thus, if the time wait is implemented in the 
slave, the master only receives the information at the end of 
the transfer, so it cannot operate during the transfer with the 
data received. If the wait statement is placed in the master, 
neither the slave nor the bus has information about the status 
of the current transfer. 

To address this issue, read transfers have been 
implemented in a two-step sequence. First, the read is 
performed in zero time, and then a new special request is 
made. The first one performs the transfer, and sends the 
information to the master. The second request has no 
functional effect; it is used only to make the time 
annotation. The bus interfaces automatically manages these 
two-step transfers, so they are hidden to the user. 

VI. Example 
To verify the technique proposed, an example has 

been implemented. This example models a Vocoder 
GSM[18]. The Vocoder is divided into two parts, one 
modeling the coder and the other one including the decoder.  

Each part has a bus with several elements connected 
(figure 4). The bus master is a processor. This processor 
executes the SW code that models the coding or decoding 
operations. To run the SW code, the tool PERFidiX has 
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TABLE II 
NEW MACROS TO INTRODUCE THE BUS INTERFACE 

#define BUS_MODULE(name)    struct name: tlm_bus_module
#define BUS_CTOR(name)  …  name(…): tlm_bus_module(...)

TABLE I 
BUS INTERFACE SC_MODULE 

class tlm_bus_module: public sc_module{ 
     // Ports and Ctor 
    void bind_bus(bus){...} 
     ... 
     //Bus Protocol management  
     void   transport (...){...} 
         ... 
    // HW interface  
    int read (addr,data,size){...}   
    int write (addr,data,size){...} 
 
    int wait_read (bool){...} 
    int wait_write (bool){...} 
 
   int send_interrupt (int irq){...} 
   ... 
} 



been used. This tool provides an OS model and obtains a 
timed simulation from the un-timed SW code.  

The SW code is stored in a memory connected to the 
same bus. Although the source-code simulation does not 
require a memory model to run, these bus accesses have 
been modeled. The effect of these accesses can be really 
important, especially if there are several masters in the same 
bus, because collisions can reduce the execution speed. To 
model them, the number of load and store operations is 
dynamically estimated at the same time the code is executed 
based on statistical information.  

The information received by the coder is generated in 
another peripheral that models the system input interface 
(I/O). The SW calls this peripheral when a new value must 
be coded. In the decoder case, the output is sent to another 
peripheral. This peripheral models the system output. It 
receives the decoder values as they are generated, and 
verifies if they are correct, comparing them with the original 
sequence provided to the coder. 

Finally, a communication channel connects the coder 
and decoder. The selected channel is a NoC. To do that, a 
point-to-point channel has been integrated in the system. 
This channel is connected to a pair of communication 
peripherals, one placed on each bus.  

Summarizing, there are two nodes with one bus, one 
processor and three peripherals, connected using the 
inherited interfaces. The operation is the following: The 
coder reads the input values from the I/O peripheral, 
encodes them and sends the codified values to the point-to-
point channel.  The decoder receives the values de-coded 
and transfers the results to the output peripheral. Once the 

decoder receives each coded frame, it sends and 
acknowledgement to the channel. Communication 
peripherals inform the software that new information is 
received using interruptions. PV and PVT bus models have 
been used. The substitution does not require modifications 
in the example code, only substituting the bus and the 
module inheritance in the macros in table II. 

Once the simulation has finished the bus reports the 
graph with the bus occupation, as can be seen in figure 5. 
There, all transfers done through the bus can be shown, 
including its duration and bandwidth used. 

VI. Conclusions 
This paper proposes a technique that allows design 

refinement at different TLM levels. It considers both the bus 
model and the peripheral bus protocol managers. This 
allows easy and partially automatic refinement of HW 
component bus interfaces. Furthermore, the performance of 
the SW tasks can be easily obtained with different 
requirements of accuracy/speed, by automatically modifying 
the bus abstraction level. 

The bus extends the common functionality of PV/PVT 
bus models allowing interleaved payload transfers, 
considering bus bandwidths and allowing dynamically 
stopping and aborting transfers. This increases the accuracy 
of the model, especially when SW models consider 
preemption and interrupts during payload transfers. 

To allow semiautomatic refinement in the bus 
connections, inheritance techniques have proven to be 
effective to replace the required bus protocol managers at 
the bus peripherals in an easy and fast way. Using a simple 
interface within the peripheral, common to all TLM 
description levels, the functionality required to perform 
requests and responses through the bus is automatically 
provided.  
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