
 

Abstract — Power consumption has become one of the 
main concerns in embedded system design. Currently, 
design platforms are composed of generic and specific 
hardware devices and general-purpose processors 
running the application software. SW functionality has a 
major impact on the total system power consumption. 
Early estimation of the power consumption of the 
application SW is crucial in order to take the correct 
design decisions as soon as possible. In this paper we 
exploit the ‘almost’ constant relationship between 
machine instructions executed per second and the 
corresponding power consumption found in many 
embedded processors. Based on this property, a 
technique to estimate the SW power consumption has 
been developed based on source code simulation. Short 
simulation times are achieved with high accuracy, so the 
technique can be applied at early stages of the design 
flow. Energy consumption of an ARM9TDMI core when 
running some typical application codes has been 
estimated1. 
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I. Introduction 

Power consumption is one of the most important 
constraints in embedded system design. Two main reasons 
motivate the constant effort of the designers to reduce 
consumption. First, in many cases, embedded systems are 
designed for mobile applications using a limited life-time 
battery. Second, thermal dissipation is constrained by cost, 
weight and size limits. As a consequence, working 
temperature must be kept low enough to allow cheap 
packaging and/or maintain system reliability above the 
required level. 

Current techniques for embedded system design 
constantly seek new improvements for maximum 
reusability. One common solution is platform-based design, 
where system platforms contain generic and specific 
purpose hardware devices controlled by application 
software executed on general purpose microprocessors. The 
development of the software accounts for more than 80% of 
the total effort of the design system [1]. Energy efficiency 
of software is lower than hardware. As a consequence, 
software execution represents an important percentage of 
the total energy consumption of the system. A design can be 

                                                           
1  This work has been supported by the Spanish MICyT and MEC through 
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rejected because the energy consumption needed to perform 
software tasks is excessive. This possible drawback justifies 
the necessity of simulations to estimate this consumption at 
earlier stages of the design flow. 

Many RISC embedded processors exhibit ‘almost’ 
constant power consumption per executed machine 
instruction. This is the case of most ARM processors [6]. 
This is based not only on the fact that there are small 
differences in power consumption among the different 
instructions, but also considering that these differences 
compensate each other when a sufficiently high number of 
instructions are executed. In this paper a technique is 
proposed for power estimation of embedded software 
execution exploiting this general characteristic. 

Energy estimation is performed by assigning an energy 
cost to each C++ operator, and overloading the application 
software operators to keep track of the total energy 
consumed. To do so, SystemC [11] is employed as modeling 
language to perform the dynamic simulation. This technique 
achieves short simulation times and avoids cross-compiling 
the source code to obtain the consumption figures. These 
figures are obtained directly as simulation results. 

As a consequence, software engineers can obtain a way to 
make early consumption estimations of their application 
code. With these results, they can consider the possibility of 
changing algorithms, reducing code or even implementing 
the target functionality in specific hardware, with the 
intention of reducing energy consumption. 

Throughout the paper, both concepts of power and energy 
consumption will be used, assuming they are correlated by 
execution time. 

The structure of the paper is the following. Section 2 
introduces the state-of-the- art in software energy estimation 
and shows the contributions of the proposed technique. 
Section 3 demonstrates how energy consumption can be 
estimated from the number of machine instructions 
executed. Section 4 presents an approach to map C++ 
operators to RISC machine instructions. Section 5 shows 
how to perform energy estimations once operator weights 
have been extracted. The ARM9TDMI core will be 
characterized in terms of energy in section 6 and 
consumption estimation of some common algorithms is 
performed. Conclusions and future work will be discussed 
in section 7. 

II. State of the art 

Power estimation has become a very important aspect of 
embedded system design. With shorter time-to-market and 
higher manufacturing costs, it is unacceptable that a full 

Energy Consumption Estimation Technique in Embedded Processors with 
Stable Power Consumption based on Source-Code Operator Energy Figures

Juan Castillo1, Héctor Posadas1, Eugenio Villar1 and Marcos Martínez2 

 1University of Cantabria 2DS2 
 E.T.S.I. Industriales y Telecom. Charles Robert Darwin 2 
 Avda. Los Castros s/n, 39005 Santander, Spain Parc Tecnológic, 46980 Paterna, Valencia, Spain
 {castillo, posadash,villar} @teisa.unican.es marcos.martinez@ds2.es 



 

design is rejected because of excessive power consumption 
when expensive prototypes have already been assembled. 
This justifies the importance of this field in embedded 
system design, and the effort made in developing new 
techniques for power estimation. 

Traditional methodologies perform power estimation at 
low abstraction levels such as gate or RT level [2][3]. This 
implies cross-compiling the source code, introducing the 
binary code in the memory model and simulating the SW 
functionality directly with a logic model of the processor. 
These methodologies are not useful for high-level power 
estimation, due to their long simulation time and the fact 
that the HW platform is not completely known at early 
stages of the design process. 

A higher level approach has been proposed in [4], where 
different components of the embedded architecture are 
modeled at cycle-accurate level in terms of energy. 
Estimation errors are within 5%, but nonetheless, cycle-
accurate simulations also require a great computational cost. 

The next step in software energy estimation was done 
using the Instruction Set Architecture of the target core 
processor [5][6]. The full set of machine instructions is 
characterized in terms of energy consumption, assigning a 
base cost for each instruction and an overhead due to the 
state changes in the processor FSM and datapath. 
Application software must be compiled and assembled to 
perform the power estimation. Although faster than RTL, 
these techniques are still too slow to analyze complex 
systems. 

Direct source-code analysis achieves shorter estimation 
times. Some methodologies have been proposed using this 
approach [7][8]. Nonetheless, they are usually based on 
specific models of processors, making the portability among 
different architectures more difficult. In [9], a source-code, 
SW simulation methodology using run-time execution time 
estimation is proposed showing the viability of dynamic SW 
analysis. 

This paper proposes a general, portable strategy to 
estimate software consumption from source-code 
simulation. The technique exploits the characteristic of 
many embedded processors which exhibit statistically 
constant power consumption per executed instruction. 
Application software is dynamically analyzed, and energy 
estimation is performed by assigning an energy weight to 
each operator. These weights are extracted from the 
underlying architecture and the approximate number of 
machine instructions necessary to perform the 
corresponding operator. Short simulation times are achieved 
due to its low computational cost. 

III. Source code energy estimation  

The technique presented in this work performs source-
code energy estimation from the operators’ individual 
energies. The operator energy is obtained by adding the 
energy consumed by all machine instructions executed to 
perform the operation. 

Assuming N is the total number of C operators and 
control statements, the total energy ET necessary to execute 
the whole application code is: 
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where En is the total amount of energy consumed related to 
operator ‘n’. En depends on how many times this operator is 
executed and the corresponding execution energy of each 
one.  

In this work, operations with variables and operations 
with immediate values are considered different, so, in fact: 

ctrop N  N*2N   

where Nop is the number of C operators, and Nctr is the 
number of C control statements. This will be explained in 
more detail in section 4. 

The energy consumed can be different each time the 
operator is executed. Depending on the data location 
(memory - registers) or the data size, the number of 
assembler instructions used can be different. 

If Mn is the number of executions of operator ‘n’ and 
Enm the energy for each single operator execution: 

)2(EEEE
N

1n

Mn

1m
nmT

Mn

1m
nmn  

   
The energy required by one operator in a single execution 

can be correlated with the number of machine instructions 
necessary to implement it. It can be calculated in the 
following way: 
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where Inm is the number of machine instructions required to 
execute the operator ‘n’ in execution ‘m’ and E’i the energy 
of the corresponding machine instruction.  

Substituting (3) into (2), the result is: 
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Simplifying this approach, we can make use of the mean 
value: 

nm

nmI

i
i

nm I

E

E

 1

'

'
 

And therefore: 
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Furthermore, in most embedded RISC processors, when 
the executed code is large enough, energy consumption per 
instruction can be considered constant without great loss of 
accuracy [6]. Therefore, if all Mn are high enough, E’ can 
be assumed to be independent of ‘m’ and ‘n’: 
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 With this assumption, E’ can be calculated from the 
processor datasheet information, independently of the 
specific design source code. The value of this parameter will 
be obtained in section 6.  

As a consequence, in equation (4), the mean energy 
consumption per instruction can be extracted from the mean 
number of assembler instructions necessary to implement 



 

the operator: 
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The number of instructions for each operator is 
architecture-dependent and it is the objective of the next 
section. 

IV. Energy consumption of C++ operators in 
RISC machines 

The energy estimation method for the source-code 
operators is shown in Figure 1: 

The estimation technique consists basically in extracting 
the number of machine instructions, which are necessary to 
execute each source code C operator. Although these values 
are architecture-dependent, the methodology proposed to 
extract them can be applied to all RISC processors. It is 
important to notice that the number of instructions can vary 
depending of several factors, such as the memory access 
mode or immediate value loads. The approximation applied 
is to consider a mean number of instructions In per C 
operator when the size of the code is large enough. This 
simplification has been proven in [12]. 
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Using this approach in (6), the equation becomes: 
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And therefore: 
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As a consequence, considering limitations in (6) and (7), 
the total energy consumption of a program can be 
calculated.  Furthermore, an approximate mean energy cost 
(En) can be defined for each operator independently of the 
SW code of each specific design. This value is the product 
of the mean number of assembler instructions executed by 
each operator, and the mean energy of an assembler 
instruction. Therefore, the new equation obtained is: 
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Based on this equation, a study must be made to correlate 
as closely as possible each C operator with the related, 
approximate number of machine instructions. C++ operators 
can be classified according to their hardware interaction. To 
do so, the C operators and control statements can be 
grouped in four types depending on their effect in the 
execution. 

A. Operators that modify general-purpose 
registers 

The first group considered is composed of those operators 
that modify the general purpose registers. The operators of 
this group are: 

++  --  +( )  -( )  !( )  ~( )  =  + 

-  *  /  %  +=  -=  *=  /=  %=  &  ^ 

|  &=  ^=  |=  <<  <<=  >>  >>= 

In general, these operators can be used in three contexts: 

(a). var1 op imm1; 

(b). var1 op var2; 

(c). var1 op var2 op2 var3; 

In the first case, the operator accepts one argument as a 
variable and the other as an immediate value. It requires a 
memory access to load ‘var1’ and other instructions to load 
the immediate value and execute the operation.   

In the second case, both operators are variables. It 
requires two memory accesses (one for each operand) and 
one operation. 

In the last case, one of the arguments is the result of other 
operation, not directly a variable. Considering that the result 
of previous operator is stored in a processor register, only 
assembler instructions for a memory access and the 
operation are required. 

Memory accesses are always load accesses except for the 
‘=’ operator, where one memory access is a store. The 
remaining operators that include ‘=’ together with another 
operation, also add a store instruction to the machine 
instructions described above. 

Apart from that, other analysis is necessary. Depending 
on the immediate value size or the place where the variable 
is, the number of assembler instructions used can be 
different. Thus, the energy cost for a single operator in the 
code has several possible values. 

When one operand is an immediate value, a study of the 
architecture is required. Most RISC processors include a 
field in the instruction word where the immediate value can 
be stored. Its width is architecture-dependent, generally 16-
bit. There is an option to load both parts of the 32-bit 
register, so the two values can be stored. Other architectures 
perform this task in different ways. 

When operands are variables, a study of memory access 
modes is necessary. Local variables are stored in the stack, 
and the most common access mode is a base plus an offset. 

Figure 1 
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The base is a pointer to the top of the stack and the offset is 
the relative position of the current element. The access 
memory instruction word includes a field where immediate 
offsets are stored. If the current offset is greater than the 
maximum value of the field, a general-purpose register is 
employed; consequently a different number of machine 
instructions are required. 

Nevertheless, as explained in section 3, only two energy 
costs are accepted for each operator, one for (a) and another 
one for cases (b) and (c). These costs are obtained before 
the simulation starts and are constant for all programs in the 
same platform. They are not obtained for each simulation 
but only once for a platform. To do so, an analysis of all 
possibilities is done. Then, weighted average values are 
calculated.  

Thus, source-code energy estimations can have an error 
depending on the deviation between the weighted average 
value extracted previously and the actual En of the analyzed 
design. 

B. Operators that modify state registers 

These operators are usually associated with control 
statements. They are commonly used to modify the 
processor state registers, and then, decide the path to be 
executed. However, these operators can also be used to 
assign a value to a variable, so they can also modify 
general-purpose registers. This means that the approach 
used with the operands in the previous group has to be 
extended. The operands of this group are: 

==  !=  >  <  >=  <=  &&  || 

In this case, operands are designed to directly modify the 
state register. If the result is used as an argument of another 
operator a general-purpose register also has to be modified. 
Thus, the state register value has to be analyzed to obtain 
the information required to assign this value. This implies 
more machine instructions than operators in the first group.  

The operator energy cost obtaining methodology is 
similar. All cases are evaluated and weighted mean costs are 
calculated based on typical test programs.  

C. Control execution flow 

These operators decide the program execution flow based 
on previously modified state registers. The statements are: 

‘for’ ‘if’ ‘while’ ”jump to function” 
“jump to member function” ‘break’ 
‘continue’ ‘return’ ‘do-while’ 

The steps to perform a conditional jump in a program 
execution are: 

(1) Use the ALU to get the result of the comparison 
(2) Update the state register 
(3) Jump according to the state register value 

RISC architectures usually group (1) and (2) in a single 
instruction and (3) is implemented as a conditional jump 
instruction. 

Statements ‘for’, ‘if’, ‘while’ and ‘do-while’ contain 
conditional and unconditional jumps. In fact, ‘do-while’ can 
be modeled together with ‘while’ statement. ‘Break’ and 
‘continue’ represent unconditional jumps, and are associated 
with ‘for’ or ‘while’ statements, so can be considered inside 

then. 
Jump to function leads to an overhead in the execution 

flow, since it is necessary to save current PC, stack pointer, 
state registers and user registers. Jump to member function 
requires a more complex calculation of the destination jump 
address, so it has a different weight.  

D. Array access 

The operator ‘[ ]’ performs array accesses. An array is a 
set of homogeneous objects stored consecutively in 
memory. An array access is performed reading a pointer to 
the first element and adding an offset to calculate the 
address of the desired element. 

Architectures implement array accesses with different 
memory access modes. The most employed mode in RISC 
architectures is ‘base plus offset’, where the base address 
(the array pointer) is stored in a processor’s register and the 
offset is expressed as an immediate value in the 
corresponding field of the instruction word. If the current 
element’s offset is bigger than the maximum value of the 
field, additional instructions or different access modes are 
required. Since embedded software must consider memory 
size constraints, it is assumed that all memory accesses fit 
into the offset field. 

Following these considerations, all In required to obtain 

the En parameters required in (9) can be obtained. An 
example will be presented in section VIII. 

V. Energy estimation process 

Once In is obtained, energy per assembler instruction is 
required to apply equation (8). However, it cannot usually 
be obtained directly from processor vendor information. 
This information usually only contains values for mean 
power dissipation, frequency or cycles per instruction. Thus, 
a new equation that allows us to estimate the mean energy 
per instruction using these figures is required. 

To obtain this equation, first we can estimate the energy 
per cycle consumed in the processor, dividing the mean 
power and the frequency. This represents the mean energy 
of all machine instructions (E’’ck) of a generic program. A 
generic program is one that is large enough and that uses all 
instructions in the same ratio as usual programs. 

 The energy consumed by the processor (E’’ckj) in a clock 
cycle ‘j’ can be considered as the addition of all pipeline 
stage energies: 


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where St is the number of stages and E’’sj the energy 
consumption of stage ‘s’ in cycle ‘j’. 

This means that if we know the mean energy per cycle, 
we can say that it can be considered as the addition of all 
mean pipeline stage energies in a generic program.  
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 Apart from that, it is known that the energy of an 
instruction ‘i’  (E’i) is:  
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where Stj is the number of pipeline stages instruction ‘i’ 
uses (Stj  St), and E’si the energy of stage ‘s’ for instruction 
‘i’. Considering that the processor has St stages, the 
previous equation implies that remaining stages requires 0 
energy.  
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Furthermore, we have to take into account that an 
instruction can require more that one cycle in a single stage. 
Considering energy per stage, the result is:  
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where Cksi is the number of clock cycles of instruction ‘i’ in 
stage ‘s’  and E’scj energy of instruction ‘j’ in stage ‘s’ and 
cycle ‘c’. 

However, to apply (8) means only energy per instruction 
is required. To obtain this, it can be assumed that there is a 
mean energy per stage and cycle, considering the mean 
number of clock cycles in a stage can be simplified using 
the processor efficiency . Applying this, the mean energy 
can be computed as: 
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where E’s is the mean energy consumption of stage ‘s’ for a 
generic program. Thus applying (10), the addition of all E’s 
of St stages in a clock cycle is equal to E’’ for the same 
generic program. So finally, the mean energy of a machine 
instruction is: 
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VI. Energy estimation process 

Once operators are characterized in terms of machine 
instructions, energy estimation can be performed. The 
proposed approach is to perform source-code dynamic 
energy estimation to apply (9). SystemC is used for this 
purpose.  

Using SystemC, software engineers do not have to 
change the source code of their projects, since it is a C++ 
class library. Basically, application code is encapsulated in a 
SystemC module and executed to perform the energy 
estimation. Figure 2 shows the proposed approach.  

However, standard SystemC presents some limitations for 
software modeling. The lack of Operating System facilities 
or execution time control can restrict the modeling 
capabilities. To solve this, an external SystemC library 
called PERFidiX [9] has been used.  

Furthermore, specific hardware can be described in 
SystemC. PERFidiX provides OS facilities to communicate 
these components with the SW tasks. This advantage allows 
co-simulation of Hardware-Software (HW/SW). Since 
embedded software is strongly hardware dependent, this 

technique supposes an important advance in the design of 
embedded systems. 

SC_MODULE

APPLICATION 
CODE 

Energy Estimation Library 

 
SYSTEMC 
PLATFORM 
MODEL 

ENERGY ESTIMATION 

SystemC

Figure 2  
However, the main reason why PERFidiX has been used 

is that it also allows a dynamic analysis of source code. 
Thus, energy estimation is achieved by extending the C++ 
operators overloading of this library [12]. This overload 
performs a count of the energy consumed up to the current 
code line. To do so, each time an operator is executed, its 
corresponding mean energy cost is added to the total 
amount of energy of the current segment of code.  

Using this solution, the total amount of energy of each 
code segment is obtained together with the corresponding 
execution time. Thus, the mean power required by each part 
of the code, and by the whole program can be easily 
estimated.  

VII. Case study: ARM9TDMI core 

To validate the power consumption estimation 
methodology, an ARM9TDMI core has been characterized.  

Declared mean power consumption of this core for a 250 
nm process, f = 200 MHz and Vdd 2.5 V, is P = 150 mW. 
An additional important parameter is the average number of 
instructions per clock cycle. In the microprocessor used, the 
efficiency is  = 0.67. These values are provided by ARM 
[10].  

Thus, applying (12) to these parameters, for the 
ARM9TDMI, E’ = 1.125 nJ / Instruction. The energy per 
operator can be obtained and test program energies can be 
estimated. 

Tables 1 and 2 present energy costs for all N operators. 
They are calculated using the mean number of instructions 
and E’ estimated above using (8). The mean number of 
instructions is calculated applying considerations in (7). 

Division and modulus operators are not directly 
performed by the ALU in RISC processors; they require 
additional hardware or specific routines provided by the 
compiler. In this case, operations are performed by 
software. To estimate division and modulus operator 
consumptions, both mean execution times have been 
measured, thus calculating the equivalent machine 
instructions with the clock period. 

Table 1 shows mean energy cost for each C operator 
when operated with variables or a variable and an 
immediate value. 

Table 2 presents mean energy cost for control statements. 



 

Table 1 

Table 2 

With these costs, some common application algorithms 
have been simulated: bubble sort, FIR filter (Finite Impulse 
Response), several operations over array elements, a 
Fibonacci series generator and a Quicksort algorithm. 

To validate the results obtained, the exact number of 
assembler instructions for each algorithm has been extracted 
from an open-source ARM ISS (Instruction Set Simulator): 
the arm-elf-gdb. Compilation has been done with GNU C++ 
compiler for ARM architecture: “arm-elf-g++”. 

Energy consumption of example programs are obtained 
and compared with the results obtained directly from source 
code. Table 3 shows the results for the algorithms 
mentioned before. We include the real number of 
instructions executed with the ISS, the equivalent energy 
consumption and the energy estimation obtained with the 
proposed methodology. Relative error is also reported. As 
can be seen, errors lower than 11% are achievable with this 
methodology. 

 

Algorithm 
Machine 

Instructions 
Energy from 

ISS (uJ) 
Estimated 

Energy (uJ) 
Error (%) 

Bubble Sort 11051 12.43 13.2 6.19 
FIR 4294 4.83 5.34 10.56 

Array 6413 7.21 6.88 4.58 
Fibonacci 3705 4.17 4.05 2.88 
Quicksort 24912 28.03 25.44 9.24 

Table 3 

VIII. Conclusions 

New system designs require higher levels of abstraction 

due to their increasing complexity. Consequently, new 
estimation techniques for performance measurement are 
necessary, in accordance with these levels. 

This paper describes a technique to estimate energy 
consumption of embedded processors while executing 
application software at the first stages of the design process. 
Source-code simulation is performed, achieving accurate 
results with short simulation times. 

SystemC is selected as description language. Since it is a 
C++ class, it is possible to encapsulate the application code 
in a SystemC module and simulate it with a SystemC 
description of the execution platform. 

Processor consumption can be characterized by 
associating an energy cost to each source code operator and 
control statement. These energy costs are extracted from the 
number of machine instructions necessary to execute the 
corresponding operator. This approach is valid in those 
processors in which consumption per executed machine 
instruction is almost constant when the executed code is 
large enough. Once the costs have been obtained, they can 
be directly reused for all designs developed on the same 
HW platform. 

Consumption estimation can be done by overloading the 
operators. Operator consumptions are added when executed 
to obtain the total energy consumption of the SW. This task 
can be performed with a specific library or an update in an 
external tool. In this work, the PERFidiX tool [9] has been 
used to implement operator overloading for time and energy 
estimation, with a low development effort. 

Future work will be centered on analyzing the impact of 
cache memories in energy consumption, since the current 
methodology only considers the processor core. Compiler 
optimizations must also be considered as they have a great 
impact on the quality of the assembler code generated. 
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Statement En (nJ) 

for 2.25 

if 1.6875 

while 2.25 

array 6.75 

jump to function 10.125 

jump to member function 11.25 

C++ En (nJ) 
(variab.) 

En (nJ) 
(immediate) 

C++ 
En (nJ) 
(variab.

) 

En (nJ) 
(immediate)

++ 3.375 3.375 != 3.375 2.25 

-- 3.375 3.375 > 3.375 2.25 

+() 0 0 < 3.375 2.25 

-() 1.125 1.125 <= 3.375 2.25 

!() 3.375 3.375 >= 3.375 2.25 

~() 1.125 1.125 && 1.125 1.125 

= 2.25 2.25 || 1.125 1.125 

+ 2.25 1.125 & 2.25 1.125 

- 2.25 1.125 ^ 2.25 1.125 

* 2.25 1.125 | 2.25 1.125 

/ 11.25 11.25 &= 3.375 3.375 

% 33.75 33.75 ^= 3.375 3.375 

+= 3.375 3.375 |= 3.375 3.375 

-= 3.375 3.375 << 2.25 1.125 

*= 3.375 3.375 <<= 3.375 3.375 

/= 14.625 14.625 >> 2.25 1.125 

%= 18 18 >>= 3.375 3.375 
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