

Abstract — Power consumption has become one of the
main concerns in embedded system design. Currently,
design platforms are composed of generic and specific
hardware devices and general-purpose processors
running the application software. SW functionality has a
major impact on the total system power consumption.
Early estimation of the power consumption of the
application SW is crucial in order to take the correct
design decisions as soon as possible. In this paper we
exploit the ‘almost’ constant relationship between
machine instructions executed per second and the
corresponding power consumption found in many
embedded processors. Based on this property, a
technique to estimate the SW power consumption has
been developed based on source code simulation. Short
simulation times are achieved with high accuracy, so the
technique can be applied at early stages of the design
flow. Energy consumption of an ARM9TDMI core when
running some typical application codes has been
estimated1.

Keywords — power estimation, embedded software,
source-code simulation, ARM

I. Introduction

Power consumption is one of the most important
constraints in embedded system design. Two main reasons
motivate the constant effort of the designers to reduce
consumption. First, in many cases, embedded systems are
designed for mobile applications using a limited life-time
battery. Second, thermal dissipation is constrained by cost,
weight and size limits. As a consequence, working
temperature must be kept low enough to allow cheap
packaging and/or maintain system reliability above the
required level.

Current techniques for embedded system design
constantly seek new improvements for maximum
reusability. One common solution is platform-based design,
where system platforms contain generic and specific
purpose hardware devices controlled by application
software executed on general purpose microprocessors. The
development of the software accounts for more than 80% of
the total effort of the design system [1]. Energy efficiency
of software is lower than hardware. As a consequence,
software execution represents an important percentage of
the total energy consumption of the system. A design can be

1 This work has been supported by the Spanish MICyT and MEC through
the MEDEA+ LoMoSA project and the TEC2005-03301 project.

rejected because the energy consumption needed to perform
software tasks is excessive. This possible drawback justifies
the necessity of simulations to estimate this consumption at
earlier stages of the design flow.

Many RISC embedded processors exhibit ‘almost’
constant power consumption per executed machine
instruction. This is the case of most ARM processors [6].
This is based not only on the fact that there are small
differences in power consumption among the different
instructions, but also considering that these differences
compensate each other when a sufficiently high number of
instructions are executed. In this paper a technique is
proposed for power estimation of embedded software
execution exploiting this general characteristic.

Energy estimation is performed by assigning an energy
cost to each C++ operator, and overloading the application
software operators to keep track of the total energy
consumed. To do so, SystemC [11] is employed as modeling
language to perform the dynamic simulation. This technique
achieves short simulation times and avoids cross-compiling
the source code to obtain the consumption figures. These
figures are obtained directly as simulation results.

As a consequence, software engineers can obtain a way to
make early consumption estimations of their application
code. With these results, they can consider the possibility of
changing algorithms, reducing code or even implementing
the target functionality in specific hardware, with the
intention of reducing energy consumption.

Throughout the paper, both concepts of power and energy
consumption will be used, assuming they are correlated by
execution time.

The structure of the paper is the following. Section 2
introduces the state-of-the- art in software energy estimation
and shows the contributions of the proposed technique.
Section 3 demonstrates how energy consumption can be
estimated from the number of machine instructions
executed. Section 4 presents an approach to map C++
operators to RISC machine instructions. Section 5 shows
how to perform energy estimations once operator weights
have been extracted. The ARM9TDMI core will be
characterized in terms of energy in section 6 and
consumption estimation of some common algorithms is
performed. Conclusions and future work will be discussed
in section 7.

II. State of the art

Power estimation has become a very important aspect of
embedded system design. With shorter time-to-market and
higher manufacturing costs, it is unacceptable that a full

Energy Consumption Estimation Technique in Embedded Processors with
Stable Power Consumption based on Source-Code Operator Energy Figures

Juan Castillo1, Héctor Posadas1, Eugenio Villar1 and Marcos Martínez2

 1University of Cantabria 2DS2
 E.T.S.I. Industriales y Telecom. Charles Robert Darwin 2
 Avda. Los Castros s/n, 39005 Santander, Spain Parc Tecnológic, 46980 Paterna, Valencia, Spain
 {castillo, posadash,villar} @teisa.unican.es marcos.martinez@ds2.es

design is rejected because of excessive power consumption
when expensive prototypes have already been assembled.
This justifies the importance of this field in embedded
system design, and the effort made in developing new
techniques for power estimation.

Traditional methodologies perform power estimation at
low abstraction levels such as gate or RT level [2][3]. This
implies cross-compiling the source code, introducing the
binary code in the memory model and simulating the SW
functionality directly with a logic model of the processor.
These methodologies are not useful for high-level power
estimation, due to their long simulation time and the fact
that the HW platform is not completely known at early
stages of the design process.

A higher level approach has been proposed in [4], where
different components of the embedded architecture are
modeled at cycle-accurate level in terms of energy.
Estimation errors are within 5%, but nonetheless, cycle-
accurate simulations also require a great computational cost.

The next step in software energy estimation was done
using the Instruction Set Architecture of the target core
processor [5][6]. The full set of machine instructions is
characterized in terms of energy consumption, assigning a
base cost for each instruction and an overhead due to the
state changes in the processor FSM and datapath.
Application software must be compiled and assembled to
perform the power estimation. Although faster than RTL,
these techniques are still too slow to analyze complex
systems.

Direct source-code analysis achieves shorter estimation
times. Some methodologies have been proposed using this
approach [7][8]. Nonetheless, they are usually based on
specific models of processors, making the portability among
different architectures more difficult. In [9], a source-code,
SW simulation methodology using run-time execution time
estimation is proposed showing the viability of dynamic SW
analysis.

This paper proposes a general, portable strategy to
estimate software consumption from source-code
simulation. The technique exploits the characteristic of
many embedded processors which exhibit statistically
constant power consumption per executed instruction.
Application software is dynamically analyzed, and energy
estimation is performed by assigning an energy weight to
each operator. These weights are extracted from the
underlying architecture and the approximate number of
machine instructions necessary to perform the
corresponding operator. Short simulation times are achieved
due to its low computational cost.

III. Source code energy estimation

The technique presented in this work performs source-
code energy estimation from the operators’ individual
energies. The operator energy is obtained by adding the
energy consumed by all machine instructions executed to
perform the operation.

Assuming N is the total number of C operators and
control statements, the total energy ET necessary to execute
the whole application code is:

(1) EE
N

1n
nT 



where En is the total amount of energy consumed related to
operator ‘n’. En depends on how many times this operator is
executed and the corresponding execution energy of each
one.

In this work, operations with variables and operations
with immediate values are considered different, so, in fact:

ctrop N N*2N 

where Nop is the number of C operators, and Nctr is the
number of C control statements. This will be explained in
more detail in section 4.

The energy consumed can be different each time the
operator is executed. Depending on the data location
(memory - registers) or the data size, the number of
assembler instructions used can be different.

If Mn is the number of executions of operator ‘n’ and
Enm the energy for each single operator execution:

)2(EEEE
N

1n

Mn

1m
nmT

Mn

1m
nmn  

 
The energy required by one operator in a single execution

can be correlated with the number of machine instructions
necessary to implement it. It can be calculated in the
following way:

)3('EE
nmI

1i
inm 


where Inm is the number of machine instructions required to
execute the operator ‘n’ in execution ‘m’ and E’i the energy
of the corresponding machine instruction.

Substituting (3) into (2), the result is:

(4) E E
N

n

M

m

I

i
iT

n nm
  
  


1 1 1

'

Simplifying this approach, we can make use of the mean
value:

nm

nmI

i
i

nm I

E

E

 1

'

'

And therefore:

'·'
1

nmnm

nmI

i
inm EIEE  



Furthermore, in most embedded RISC processors, when
the executed code is large enough, energy consumption per
instruction can be considered constant without great loss of
accuracy [6]. Therefore, if all Mn are high enough, E’ can
be assumed to be independent of ‘m’ and ‘n’:

 
 )5(,1

''/,1

min

min

nnn

nmn

MMMm

EEMNn




 With this assumption, E’ can be calculated from the
processor datasheet information, independently of the
specific design source code. The value of this parameter will
be obtained in section 6.

As a consequence, in equation (4), the mean energy
consumption per instruction can be extracted from the mean
number of assembler instructions necessary to implement

the operator:

)6(I'E'E·IE
N

1n

M

1m
nm

N

1n

M

1m
nmT

nn
  
  

The number of instructions for each operator is
architecture-dependent and it is the objective of the next
section.

IV. Energy consumption of C++ operators in
RISC machines

The energy estimation method for the source-code
operators is shown in Figure 1:

The estimation technique consists basically in extracting
the number of machine instructions, which are necessary to
execute each source code C operator. Although these values
are architecture-dependent, the methodology proposed to
extract them can be applied to all RISC processors. It is
important to notice that the number of instructions can vary
depending of several factors, such as the memory access
mode or immediate value loads. The approximation applied
is to consider a mean number of instructions In per C
operator when the size of the code is large enough. This
simplification has been proven in [12].

 
  min

min

,1

/,1

nnnnnm

n

MMMmII

MNn





Using this approach in (6), the equation becomes:

  
  


N

n

nM

1m
n

N

n

nM

1m
nmT I EI EE

11

.'.'

And therefore:

)7(·'
1

n

N

n
nT IMEE 




As a consequence, considering limitations in (6) and (7),
the total energy consumption of a program can be
calculated. Furthermore, an approximate mean energy cost
(En) can be defined for each operator independently of the
SW code of each specific design. This value is the product
of the mean number of assembler instructions executed by
each operator, and the mean energy of an assembler
instruction. Therefore, the new equation obtained is:

 (9)EME(8) ' EIE

 ' EIM IM' E E

N

1n
nnTnn

N

1n
nn

N

1n
nnT













..

)..(..

Based on this equation, a study must be made to correlate
as closely as possible each C operator with the related,
approximate number of machine instructions. C++ operators
can be classified according to their hardware interaction. To
do so, the C operators and control statements can be
grouped in four types depending on their effect in the
execution.

A. Operators that modify general-purpose
registers

The first group considered is composed of those operators
that modify the general purpose registers. The operators of
this group are:

++ -- +() -() !() ~() = +

- * / % += -= *= /= %= & ^

| &= ^= |= << <<= >> >>=

In general, these operators can be used in three contexts:

(a). var1 op imm1;

(b). var1 op var2;

(c). var1 op var2 op2 var3;

In the first case, the operator accepts one argument as a
variable and the other as an immediate value. It requires a
memory access to load ‘var1’ and other instructions to load
the immediate value and execute the operation.

In the second case, both operators are variables. It
requires two memory accesses (one for each operand) and
one operation.

In the last case, one of the arguments is the result of other
operation, not directly a variable. Considering that the result
of previous operator is stored in a processor register, only
assembler instructions for a memory access and the
operation are required.

Memory accesses are always load accesses except for the
‘=’ operator, where one memory access is a store. The
remaining operators that include ‘=’ together with another
operation, also add a store instruction to the machine
instructions described above.

Apart from that, other analysis is necessary. Depending
on the immediate value size or the place where the variable
is, the number of assembler instructions used can be
different. Thus, the energy cost for a single operator in the
code has several possible values.

When one operand is an immediate value, a study of the
architecture is required. Most RISC processors include a
field in the instruction word where the immediate value can
be stored. Its width is architecture-dependent, generally 16-
bit. There is an option to load both parts of the 32-bit
register, so the two values can be stored. Other architectures
perform this task in different ways.

When operands are variables, a study of memory access
modes is necessary. Local variables are stored in the stack,
and the most common access mode is a base plus an offset.

Figure 1

OPERATOR
ENERGY

ESTIMATION

C++
OPERATOR

ASSEMBLER
INSTRUCTIONS

ENERGY PER
INSTRUCTION

The base is a pointer to the top of the stack and the offset is
the relative position of the current element. The access
memory instruction word includes a field where immediate
offsets are stored. If the current offset is greater than the
maximum value of the field, a general-purpose register is
employed; consequently a different number of machine
instructions are required.

Nevertheless, as explained in section 3, only two energy
costs are accepted for each operator, one for (a) and another
one for cases (b) and (c). These costs are obtained before
the simulation starts and are constant for all programs in the
same platform. They are not obtained for each simulation
but only once for a platform. To do so, an analysis of all
possibilities is done. Then, weighted average values are
calculated.

Thus, source-code energy estimations can have an error
depending on the deviation between the weighted average
value extracted previously and the actual En of the analyzed
design.

B. Operators that modify state registers

These operators are usually associated with control
statements. They are commonly used to modify the
processor state registers, and then, decide the path to be
executed. However, these operators can also be used to
assign a value to a variable, so they can also modify
general-purpose registers. This means that the approach
used with the operands in the previous group has to be
extended. The operands of this group are:

== != > < >= <= && ||

In this case, operands are designed to directly modify the
state register. If the result is used as an argument of another
operator a general-purpose register also has to be modified.
Thus, the state register value has to be analyzed to obtain
the information required to assign this value. This implies
more machine instructions than operators in the first group.

The operator energy cost obtaining methodology is
similar. All cases are evaluated and weighted mean costs are
calculated based on typical test programs.

C. Control execution flow

These operators decide the program execution flow based
on previously modified state registers. The statements are:

‘for’ ‘if’ ‘while’ ”jump to function”
“jump to member function” ‘break’
‘continue’ ‘return’ ‘do-while’

The steps to perform a conditional jump in a program
execution are:

(1) Use the ALU to get the result of the comparison
(2) Update the state register
(3) Jump according to the state register value

RISC architectures usually group (1) and (2) in a single
instruction and (3) is implemented as a conditional jump
instruction.

Statements ‘for’, ‘if’, ‘while’ and ‘do-while’ contain
conditional and unconditional jumps. In fact, ‘do-while’ can
be modeled together with ‘while’ statement. ‘Break’ and
‘continue’ represent unconditional jumps, and are associated
with ‘for’ or ‘while’ statements, so can be considered inside

then.
Jump to function leads to an overhead in the execution

flow, since it is necessary to save current PC, stack pointer,
state registers and user registers. Jump to member function
requires a more complex calculation of the destination jump
address, so it has a different weight.

D. Array access

The operator ‘[]’ performs array accesses. An array is a
set of homogeneous objects stored consecutively in
memory. An array access is performed reading a pointer to
the first element and adding an offset to calculate the
address of the desired element.

Architectures implement array accesses with different
memory access modes. The most employed mode in RISC
architectures is ‘base plus offset’, where the base address
(the array pointer) is stored in a processor’s register and the
offset is expressed as an immediate value in the
corresponding field of the instruction word. If the current
element’s offset is bigger than the maximum value of the
field, additional instructions or different access modes are
required. Since embedded software must consider memory
size constraints, it is assumed that all memory accesses fit
into the offset field.

Following these considerations, all In required to obtain

the En parameters required in (9) can be obtained. An
example will be presented in section VIII.

V. Energy estimation process

Once In is obtained, energy per assembler instruction is
required to apply equation (8). However, it cannot usually
be obtained directly from processor vendor information.
This information usually only contains values for mean
power dissipation, frequency or cycles per instruction. Thus,
a new equation that allows us to estimate the mean energy
per instruction using these figures is required.

To obtain this equation, first we can estimate the energy
per cycle consumed in the processor, dividing the mean
power and the frequency. This represents the mean energy
of all machine instructions (E’’ck) of a generic program. A
generic program is one that is large enough and that uses all
instructions in the same ratio as usual programs.

 The energy consumed by the processor (E’’ckj) in a clock
cycle ‘j’ can be considered as the addition of all pipeline
stage energies:





St

s
jsjck EE

1

'''' ,

where St is the number of stages and E’’sj the energy
consumption of stage ‘s’ in cycle ‘j’.

This means that if we know the mean energy per cycle,
we can say that it can be considered as the addition of all
mean pipeline stage energies in a generic program.

(10)EE
St

s
sck 




1

''''

 Apart from that, it is known that the energy of an
instruction ‘i’ (E’i) is:





iSt

s
isi EE

1

''

where Stj is the number of pipeline stages instruction ‘i’
uses (Stj  St), and E’si the energy of stage ‘s’ for instruction
‘i’. Considering that the processor has St stages, the
previous equation implies that remaining stages requires 0
energy.

St s St 0 EEE jjs

St

s
isi  


/''

1

Furthermore, we have to take into account that an
instruction can require more that one cycle in a single stage.
Considering energy per stage, the result is:

 
 


St

s

siCk

c
isc

St

s
isi EEE

1 11

'''

where Cksi is the number of clock cycles of instruction ‘i’ in
stage ‘s’ and E’scj energy of instruction ‘j’ in stage ‘s’ and
cycle ‘c’.

However, to apply (8) means only energy per instruction
is required. To obtain this, it can be assumed that there is a
mean energy per stage and cycle, considering the mean
number of clock cycles in a stage can be simplified using
the processor efficiency . Applying this, the mean energy
can be computed as:

)11(·
1

'
11

 





St

s
s

St

s

s E
E

E

where E’s is the mean energy consumption of stage ‘s’ for a
generic program. Thus applying (10), the addition of all E’s
of St stages in a clock cycle is equal to E’’ for the same
generic program. So finally, the mean energy of a machine
instruction is:

)12(
·

·
1

'
1 f

PE
EE ck

St

s
s 







 


VI. Energy estimation process

Once operators are characterized in terms of machine
instructions, energy estimation can be performed. The
proposed approach is to perform source-code dynamic
energy estimation to apply (9). SystemC is used for this
purpose.

Using SystemC, software engineers do not have to
change the source code of their projects, since it is a C++
class library. Basically, application code is encapsulated in a
SystemC module and executed to perform the energy
estimation. Figure 2 shows the proposed approach.

However, standard SystemC presents some limitations for
software modeling. The lack of Operating System facilities
or execution time control can restrict the modeling
capabilities. To solve this, an external SystemC library
called PERFidiX [9] has been used.

Furthermore, specific hardware can be described in
SystemC. PERFidiX provides OS facilities to communicate
these components with the SW tasks. This advantage allows
co-simulation of Hardware-Software (HW/SW). Since
embedded software is strongly hardware dependent, this

technique supposes an important advance in the design of
embedded systems.

SC_MODULE

APPLICATION
CODE

Energy Estimation Library

SYSTEMC
PLATFORM
MODEL

ENERGY ESTIMATION

SystemC

Figure 2
However, the main reason why PERFidiX has been used

is that it also allows a dynamic analysis of source code.
Thus, energy estimation is achieved by extending the C++
operators overloading of this library [12]. This overload
performs a count of the energy consumed up to the current
code line. To do so, each time an operator is executed, its
corresponding mean energy cost is added to the total
amount of energy of the current segment of code.

Using this solution, the total amount of energy of each
code segment is obtained together with the corresponding
execution time. Thus, the mean power required by each part
of the code, and by the whole program can be easily
estimated.

VII. Case study: ARM9TDMI core

To validate the power consumption estimation
methodology, an ARM9TDMI core has been characterized.

Declared mean power consumption of this core for a 250
nm process, f = 200 MHz and Vdd 2.5 V, is P = 150 mW.
An additional important parameter is the average number of
instructions per clock cycle. In the microprocessor used, the
efficiency is  = 0.67. These values are provided by ARM
[10].

Thus, applying (12) to these parameters, for the
ARM9TDMI, E’ = 1.125 nJ / Instruction. The energy per
operator can be obtained and test program energies can be
estimated.

Tables 1 and 2 present energy costs for all N operators.
They are calculated using the mean number of instructions
and E’ estimated above using (8). The mean number of
instructions is calculated applying considerations in (7).

Division and modulus operators are not directly
performed by the ALU in RISC processors; they require
additional hardware or specific routines provided by the
compiler. In this case, operations are performed by
software. To estimate division and modulus operator
consumptions, both mean execution times have been
measured, thus calculating the equivalent machine
instructions with the clock period.

Table 1 shows mean energy cost for each C operator
when operated with variables or a variable and an
immediate value.

Table 2 presents mean energy cost for control statements.

Table 1

Table 2

With these costs, some common application algorithms
have been simulated: bubble sort, FIR filter (Finite Impulse
Response), several operations over array elements, a
Fibonacci series generator and a Quicksort algorithm.

To validate the results obtained, the exact number of
assembler instructions for each algorithm has been extracted
from an open-source ARM ISS (Instruction Set Simulator):
the arm-elf-gdb. Compilation has been done with GNU C++
compiler for ARM architecture: “arm-elf-g++”.

Energy consumption of example programs are obtained
and compared with the results obtained directly from source
code. Table 3 shows the results for the algorithms
mentioned before. We include the real number of
instructions executed with the ISS, the equivalent energy
consumption and the energy estimation obtained with the
proposed methodology. Relative error is also reported. As
can be seen, errors lower than 11% are achievable with this
methodology.

Algorithm
Machine

Instructions
Energy from

ISS (uJ)
Estimated

Energy (uJ)
Error (%)

Bubble Sort 11051 12.43 13.2 6.19
FIR 4294 4.83 5.34 10.56

Array 6413 7.21 6.88 4.58
Fibonacci 3705 4.17 4.05 2.88
Quicksort 24912 28.03 25.44 9.24

Table 3

VIII. Conclusions

New system designs require higher levels of abstraction

due to their increasing complexity. Consequently, new
estimation techniques for performance measurement are
necessary, in accordance with these levels.

This paper describes a technique to estimate energy
consumption of embedded processors while executing
application software at the first stages of the design process.
Source-code simulation is performed, achieving accurate
results with short simulation times.

SystemC is selected as description language. Since it is a
C++ class, it is possible to encapsulate the application code
in a SystemC module and simulate it with a SystemC
description of the execution platform.

Processor consumption can be characterized by
associating an energy cost to each source code operator and
control statement. These energy costs are extracted from the
number of machine instructions necessary to execute the
corresponding operator. This approach is valid in those
processors in which consumption per executed machine
instruction is almost constant when the executed code is
large enough. Once the costs have been obtained, they can
be directly reused for all designs developed on the same
HW platform.

Consumption estimation can be done by overloading the
operators. Operator consumptions are added when executed
to obtain the total energy consumption of the SW. This task
can be performed with a specific library or an update in an
external tool. In this work, the PERFidiX tool [9] has been
used to implement operator overloading for time and energy
estimation, with a low development effort.

Future work will be centered on analyzing the impact of
cache memories in energy consumption, since the current
methodology only considers the processor core. Compiler
optimizations must also be considered as they have a great
impact on the quality of the assembler code generated.

 References

[1] ITRS: “International Technology Roadmap for
Semiconductors: 2005 Edition”,
http://www.itrs.net/Common/2005ITRS/Home2005.htm.
 [2] T. H. Krodel, “PowerPlay – Fast Dynamic Power Estimation
Based on Logic Simulation”, 1991.
[3] F. N. Najm, “A Survey of Power Estimation Techniques in
VLSI Circuits”, IEEE: Transactions on VLSI Systems, 1994.
[4] T. Simunié, L. Benini, G. De Micheli, “Cycle-Accurate
Simulation of Energy Consumption in Embedded Systems”, DAC,
1999.
[5] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded
Software: A First Step towards Software Power minimization”,
ACM Conference, 1994.
[6] A. Sinha, A.P. Chandrakasan, “Joule-Track, A Web Based
Tool for Software Energy Profiling”, DAC, 2001.
[7] J. Laurent, E. Senn, N. Julien, E. Martin, “Power Consumption
Estimation of a C-algorithm: A New Perspective for Software
Design”, ACM LCR Conference, 2002.
[8] C. Brandolese, W. Fornaciari, L. Pomante, F. Salice, D. Sciuto,
“A Multi-level Strategy for Software Power Estimation”, XXX.
[9] H. Posadas, J. Adámez, E. Villar, Francisco Escuder (DS2),
Francisco Blasco (DS2), “RTOS modeling in SystemC for Real-
Time embedded SW simulation: A POSIX model”, Design
Automation for Embedded Systems, V.10, N.4, Springer, 2005.
[10] S. Furber, “ARM, System-on-chip Architecture. 2nd Ed”,
Addison-Wesley, 2000.
[11] www.systemc.org.
[12] H. Posadas, F. Herrera, P. Sánchez, E. Villar and F. Blasco:
“System-level performance analysis in SystemC”, in Proc of

Statement En (nJ)

for 2.25

if 1.6875

while 2.25

array 6.75

jump to function 10.125

jump to member function 11.25

C++ En (nJ)
(variab.)

En (nJ)
(immediate)

C++
En (nJ)
(variab.

)

En (nJ)
(immediate)

++ 3.375 3.375 != 3.375 2.25

-- 3.375 3.375 > 3.375 2.25

+() 0 0 < 3.375 2.25

-() 1.125 1.125 <= 3.375 2.25

!() 3.375 3.375 >= 3.375 2.25

~() 1.125 1.125 && 1.125 1.125

= 2.25 2.25 || 1.125 1.125

+ 2.25 1.125 & 2.25 1.125

- 2.25 1.125 ^ 2.25 1.125

* 2.25 1.125 | 2.25 1.125

/ 11.25 11.25 &= 3.375 3.375

% 33.75 33.75 ^= 3.375 3.375

+= 3.375 3.375 |= 3.375 3.375

-= 3.375 3.375 << 2.25 1.125

*= 3.375 3.375 <<= 3.375 3.375

/= 14.625 14.625 >> 2.25 1.125

%= 18 18 >>= 3.375 3.375

DATE, 2004

