

Workshop 1: System Design in Avionics & Space

Specification for SystemC-AADL interoperability

Eugenio Villar

Eduardo de las Heras Microelectronic Engineering Group University of Cantabria

Outline

- Motivations
- General Concepts
 - AADL
 - SystemC
 - PERFidiX and SCope
- AADL-SystemC Design Flow
- Mapping AADL to SystemC
- Example

Motivations

- System design issues:
 - Incomplete capture of specification
 - Need for design refinement and validation
 - Impact of functional and non-functional properties
 - Timing properties
 - Platform architecture
 - Software/Hardware co-design

AADL Concepts

SystemC Concepts

- SystemC features
 - Standard platform for system design (IEEE 1666) developed by the OSCI
 - -C++ extension
 - -Strict-time, event driven simulator
 - Concurrent Execution Kernel

SystemC Concepts

SystemC Basic Elements

SCoPE Concepts

- System Co-simulation and Performance Estimation in SystemC
 - Multi-processor SW source-code simulation
 - -OS Modelling
 - -POSIX
 - -Timed SW simulation
 - Performance estimation of SW code
 - -Time & Power

www.teisa.uniean.es/scope

SCoPE Concepts

AADL-SystemC Design Flow

AADL to SystemC Framework

Data: Enable manipulate data in—concurrently in non-deterministic order.

- Properties
 - Concurrency_Control_Protocol

→ Channel: Enable communication between modules

- Properties
 - •Semaphores, mutex, custom channels.

Processor: Abstraction of hardware and software responsible for scheduling and executing threads.

Properties

- Process_Swap_Execution_time
- Thread_Swap_Execution_time
- Scheduling_Protocols

High level, POSIX simulation library and performance Analysis

SCope configuration parameters

→ POSIX scheduling_protocols

Properties

• Transmission time, propagation delay

AADL Semantics in SystemC

SCope configuration

parameters

Devices: Execution platform component that interface with the exterior

Event data port

Event port

Data port

Ports and Connections: Logical Connections to exchange control and data between threads.

SystemC

SystemC description at various levels:

- •TLM
- •RTL
- •Synthesis

Signal channel, ports, interface

FIFO channel ports, interface

Custom Channels, ports, interface

Example

Example

■ 4.7 Thread Instance thread producer

Example

Conclusions

- SystemC allows modeling AADL
 - Different abstraction levels
 - Refinement
 - Validation
- Specification for model transformation from AADL to SystemC
- Tool proposal for embedded system design

END

THANK YOU FOR YOUR ATTENTION

QUESTIONS?