
 Automatic generation of modifiable platform

models in SystemC for Automatic System

Architecture Exploration

Héctor Posadas, Gerardo de Miguel & Eugenio Villar

Microelectronics Engineering Group, University of Cantabria

ETSIIT Av. Los Castros 39005 Santander

{posadash, gdmiguel, villar}@teisa.unican.es

Abstract
1—Early Design Space Exploration (DSE) is

crucial to achieve optimal designs in large, configurable

embedded systems. In platform-based design, the

exploration process must cover two areas: selecting the

base platform and customizing the configuration

parameters. Although exploring the optimal parameters'

configuration is a well-known topic, there is a lack of

works exploring both areas together. There are no

mechanisms to describe all the platform possibilities or

simulation infrastructures capable of supporting

automatic DSE of both areas. This work proposes a XML-

based methodology oriented to describe and

automatically create system models of fully configurable

systems. The XML descriptions are adequate to be

handled by common multi-objective exploration tools.

The simulation infrastructure developed automatically

creates the models of the different possible architectures

and obtains their performance features to perform the

exploration. To allow efficient architecture exploration,

the high-level system model is automatically built at run-

time, avoiding recompiling times.

Keywords—Multiprocessor System-on-chip, system

modeling, architecture exploration, design space

exploration, native co-simulation

 I. INTRODUCTION

Nowadays, complex electronic systems combine

several processors and specific HW components. As

well as providing large computational power, this

growth of complexity also implies multiple design

possibilities. To cope with this complexity, platform-

based design is a widely used solution.

Any given design space has a limited number of

good solutions to its basic problems [1]. Platform-

based design techniques apply this idea by defining

platforms that captures the good solutions to the

important design challenges in the different design

spaces. These platforms define the number and kind of

system components and the system architecture.

Platforms are composed of configurable

components. Thus, the platforms are customizable

through a set of configuration parameters. Each

1 This work has been supported by the Spanish

MICyT and the EC through MULTICUBE FP7-

216693 and the TEC2008-04107 projects.

platform instance derived from the customizable

platform maintains enough flexibility to support an

application space that guarantees the production

volumes necessary for economically viable

manufacturing [1].

When developing a specific design, platform-based

design requires defining first the most suitable platform

among the set of platforms oriented to this design

space. Then, the best configuration of their

components has to be identified.

To evaluate the different possibilities and to select

the best configuration, Design Space Exploration

(DSE) techniques have been proposed. DSE strategies

are commonly based on leveraging Design of

Experiments (DoE) and Response Surface Modeling

(RSM) techniques. The DoE consists in deciding the

system simulations, called experiments, required to

obtain the required information for RSM.

Current DSE solutions are focused on exploring the

best configuration once the platform has been selected.

However, the exploration required to select the best

platform architecture is not covered. Exploring the best

platform architecture for a design implies adding and

removing components from the system and trying

different communication infrastructures. Current

simulation tools are prepared to allow modifying

certain values of the system components, such as size,

or frequency [2,3]. These parameters only require

modifying a value in the system model, not the model

itself.

Two issues must be considered to allow exploring

which is the best system architecture among the

available platforms for a certain design. First, it is

required a method capable of describing the possible

platforms and all its configurable options. Second, it is

required a simulator capable of creating the system

models from these descriptions.

When the system architecture is modified, a new

system model has to be created. Current tools and

methods for system description and simulation are not

prepared for automatic system model creation. System

description languages, such as IP-XACT [4], provide

facilities to describe configurable components.

However, the system architectures described with these

languages are fixed.

XXIV Design of Circuits and Integrated Systems Conference Zaragoza, Nov. 18-20, 2009

pg. 370

In addition, simulation and modeling tools require

fixed system models. They do not have enough

intelligence to add, connect or remove components

automatically. Creation of new models of these

modifiable platforms requires interaction with the

designer, which is not a feasible solution for automatic,

efficient DSE.

This paper provides a solution for both problems. A

set of XML rules to allow platform architectures

exploration is presented. Furthermore, it is provided a

simulation engine capable of automatically building the

model from the XML description considering the

selected parameters. The XML rules have been

developed in a generic way and can be added to any

other XML-based system description language.

To perform efficient DSE, the execution of the

simulations must be as fast as possible. To achieve that

goal, the presented infrastructure automatically builds

the system models at run-time, avoiding recompiling

times.

Once obtained the performance results of each

possible configuration from the simulator, the

exploration can be tackled using common multi-

objective exploration solutions [12]. Thus, neither the

DoE nor the RSM techniques will be considered in this

paper. It is limited to platform description and

automatic system model creation.

The DSE tools define the proper DoE to explore the

architecture possibilities from the XML. The

simulation engine builds the platform model and

obtains the performance results for each experiment.

Finally the DSE tool can apply RSM techniques to

obtain the optimal configuration.

This paper is structured as follows. First, the related

work is reviewed. Then, the complete DSE execution

flow proposed is presented. Next, the proposed

solutions to describe modifiable systems in XML are

shown. Then, the automatic model generation is

explained. Finally results and conclusions are inferred.

 II. STATE OF THE ART

Design Space Exploration is an important research

area. Several tools capable of defining adequate DoEs

and applying RSMs have been proposed [11, 12, 13].

These solutions allow defining multi-objective

explorations, which can be used to obtain the optimal

platform configurations. Nevertheless, these tools

require simulation engines working together to perform

the exploration. In fact, the simulators are the

bottleneck for the proposed platform exploration.

Some works have been focused on automating the

exploration of component interconnection [7, 8, 10].

However, these works do not provide complete design

models.

Automatic generation of system models oriented to

specific target architectures has been proposed [14, 15].

However, as specific solutions they cannot be used to

explore which is the best platform for a specific

application.

To provide more generic techniques, transaction

level modeling techniques based on system-level

design languages like SystemC have been proposed [6,

9, 16].

In [5] a TLM framework for automatic system

model generation is proposed. The framework receives

a fixed system description and generates the executable

system model.

Some commercial tools [2, 3] can model designs at

this TLM level. The schematic entry tools simply

provide a graphical interface for plugging existing

database models together. These models are described

and connected at the transaction-level. They also

provide shell interfaces which allow modifying the

characteristics of the system components. However, the

system architecture is fixed and cannot be modified.

An alternative solution to schematic entries for

system description and model generation is using XML

based descriptions. IP-XACT [4] standard describes an

XML schema for meta-data documenting Intellectual

Property (IP) used in the development, implementation

and verification of electronic systems. This schema

provides a standard method to document IP that is

compatible with automated integration techniques.

Several tools have been developed to support that

integration [17, 18]. The resulting models can only

configure certain parameters on the system

components. However, modifiable platforms cannot be

described through IP-XACT and modeled with these

tools. Thus, the exploration of the best platform

architecture cannot be performed with these tools.

This work presents a solution to describe modifiable

architectures and automatically generate the

corresponding system models. These models can be

configured by modifying the parameters of the system

components and also modifying the system architecture

itself. This modeling capability will allow the DSE

tools not only to find the optimal tunning of the system

components, but also to optimize the system itself.

System descriptions will be performed in a simple

XML format, although the proposed solutions can be

easily adapted to other XML descriptions.

The modeling tool has been achieved starting from

the work proposed in [16]. The XML extension allows

automatic system model creation and support

modifiable descriptions. To dynamically create the

models, some ideas of [5] have been applied to ensure

correct automatic interconnection of the system

components.

 III. DSE PROPOSED FLOW

SCoPE [16] is a Simulation framework based on

SystemC and oriented to system modeling. It is based

on approximately timed system simulations. As a

SystemC extension library, the tool was designed to

receive the system descriptions as SystemC code.

However, to allow automatic system model generation

at run-time, this approach must be changed.

The tool has been extended to accept the system

description in a friendly format and automatically

generate the system model. Two input XML files and a

XML output file have been defined to provide the

system description and return the simulation results.

Figure 1 shows how these files are used to configure

the simulator and to connect it with an external DSE

tool, as those presented in the state of the art.

The two input files are the following:

XXIV Design of Circuits and Integrated Systems Conference Zaragoza, Nov. 18-20, 2009

pg. 371

− a file describing the system and its

configuration options, called System Description file

− a file of pairs identifier-value, fixing the

selected configuration for each experiment, called

System Configuration file

FIGURE 1: SIMULATOR AND DSE TOOL INTERCONNECTION

The external DSE explorer only indicates the

simulator about the configuration to be analyzed each

time by generating the corresponding System

Configuration file. The simulation tool interprets the

file, builds the system model and performs the

simulation. This means that no user interaction or

model recompiling is required once the exploration

process starts.

The tool generates an output file, when the

simulation finishes. This file contains the values of the

metrics obtained during the simulation. The

information returned is used by the DSE explorer to

perform the search of the best solutions applying the

RSM techniques.

 IV. CONFIGURABLE XML SYSTEM DESCRIPTIONS

The XML System Description file includes

information about the HW components, the HW

architecture, and the SW tasks. A simple XML

language has been developed to easily explain the

proposed way to describe modifiable platforms. The

language guarantees fast model creation and efficient

system simulation.

A really simple example of an XML description

using this language is shown in figure 2. To keep it

simple, no configurable options has been added. The

example proposes a system with a processor and a

memory connected to a bus. A “hello world”

application has been selected to execute in the

processor.

FIGURE 2: SIMPLE XML SYSTEM DESCRIPTION

To describe a system with several platform

architecture options and its configuration possibilities

three XML mechanisms are provided. All three

methods can be used simultaneously to describe highly

configurable systems.

A. Configuration of the System Components

The first configuration possibility is to tune the

characteristics of the system components. The values of

all parameters in the XML file can be replaced by

identifiers when the parameter is a configurable one.

For example, in Figure 3, the bus frequency that was

indicated in Figure 2 has been replaced by the identifier

“FREQ”.

To select a configuration, the values of all

identifiers must be assigned in the System

Configuration File. Thus, to perform different

simulations it is only required to modify the value-

identifier pairs in the System Configuration file (figure

1).

Applying this solution, the simulation of each

experiment required by the DoE is performed by

substituting the identifiers of the configurable

parameters by the selected values and creating the

corresponding system model.

FIGURE 3: DEFINING A CONFIGURABLE PARAMETER

B. Replication of system components

The second possibility is to indicate the number of

times a system component is replicated. To do so, a

new XML “repeat” clause is provided. This clause

defines the number of times the element is repeated, an

index identifier and the initial index value. Figure 4

corresponds to an extension of the system description

in Figure 2 considering that the number of CPUs in the

system can be set by the “CPUS” parameter. This

parameter must be assigned in the System

Configuration file.

FIGURE 4: XML DESCRIPTION WITH MULTIPLE PROCESSORS

The “Repeat” clause can be used to replicate both

<HW_Platform>

 <HW_Components>
 <HW_Component category="bus" name="AMBA" frequency="200MHz" />
 <HW_Component category="processor" name="arm926t" frequency="200MHz"/>
 <HW_Component category="memory" name="Memory"
 mem_size="500MB" frequency="200MHz" mem_type="RAM" />
 </HW_Components>
 <HW_Architecture>
 <HW_Instance component="AMBA" name="my_bus" >
 <HW_Instance component="arm926t" name="my_proc" />
 <HW_Instance component="Memory" name="my_memory"
 start_addr="0x80000000" />
 </HW_Instance>
 </HW_Architecture>
 </HW_Platform>
 <Application>
 <Functionality>
 <Exec_Component name="hello" category="SW" function="hello_main" />
 </Functionality>
 <Allocation>
 <Exec_Instance name="Hello_world" component="hello"
 processor="my_proc"/>
 </Allocation>
 </Application>

<HW_Platform>

 <HW_Components>
 ...
 </HW_Components>
 <HW_Architecture>
 <HW_Instance component="AMBA" name="my_bus" >
 <repeat numer=”CPUS” index=”i” init=”1”>

 <HW_Instance component="arm926t" name="my_proc[%i]" />
 </repeat>

 <HW_Instance component="Memory" name="my_memory"/>
 </HW_Instance>
 </HW_Architecture>
 </HW_Platform>
 <Application>
 <Functionality>
 <Exec_Component name="hello" category="SW" function="hello_main" />
 </Functionality>
 <Allocation>
 <repeat numer=”CPUS” index=”j” init=”1”>

 <Exec_Instance name="task[%i]" component="hello"
 processor="my_proc[%j]"/>
 </repeat>
 </Allocation>
 </Application>

<HW_Platform>

 <HW_Components>
 <HW_Component category="bus" name="AMBA" frequency="FREQ" />

 ...

 </HW_Components>
 ...

 </HW_Platform>

XXIV Design of Circuits and Integrated Systems Conference Zaragoza, Nov. 18-20, 2009

pg. 372

single components and groups of components, copying

complete parts of the system architecture. If the value

is set to '0', the element is not placed in the system.

This option is used to add or delete different

components within the system, including modifying

SW components, HW components and the

communication infrastructures. As a consequence,

different platform architectures can be described.

C. Selecting complete configurations

The third solution is to define several complete

configurations and select one on each simulation. For

example, in figure 5, two different HW architectures

are described (“arch1” and “arch2”). The one selected

for each simulation is defined in the “Implementation”

clause. In this example, the architecture selected

depends on the “ARCH” identifier. Its value must be

set in the System Configuration file to “arch1” or to

“arch2”.

The system description mechanism allows dividing

the system description in parts and exploring different

combinations. Multiple HW component lists, HW

architectures or SW allocations can be described to be

explored by the DSE tool.

FIGURE 5: XML DESCRIPTION DIFFERENT HW ARCHITECTURES

 V. BUILDING MODIFIABLE SYSTEM MODELS

To simulate each one of the configurations selected

by the DSE tool, different system models must be

created. The model descriptions can be obtained

applying the values of the XML System Configuration

file to the XML System Description.

FIGURE 6: DESIGN MODEL CREATION FLOW

The simulation infrastructure integrates a library of

generic HW components, which can be easily extended

with SystemC models of the application-specific

components. The SW components must be compiled

for native execution and integrated in the SW

components library. The SW infrastructure, as the OS

model is also provided by the simulation engine. The

tool provides models for POSIX and uCOS OS. Other

OS models can also be added by providing the required

OS models. The OS model is in charge of starting and

managing the task execution. In case of SMP systems,

it is also in charge of deciding the punctual allocation

of each task.

To generate the system model, the simulator

dynamically creates instances of the required models

and builds a platform model by interconnecting them

as specified in the XML files.

To ensure an efficient DSE process, not only the

dynamic system creation is required. As it can be

required to optimize a large number of parameters for

the system, the associated design space can be really

large. As a consequence, a large DoE is obtained, thus

requiring multiple simulations. The simulations

themselves must be as fast as possible. To achieve that,

the loosely-timed abstraction level has been selected

for the system models. This abstraction level is the

most adequate one to ensure rapid exploration of the

design space.

Nevertheless, the proposed solution can also be

easily applicable to other abstraction levels, as cycle

accurate level.

A. HW components instantiation

The simulation engine contains models of some of

the most usual system components. Models of

processors, memories, bus, DMAs, etc. can be selected

to create the system model. The first step is thus to

create instances of all the components indicated in the

XML files.

The component models are configurable ones.

These models contain a long range of configuration

details to describe their functionality. Response times,

delays, area, mean power consumption, power for

access, frequency, memory size, IRQ or associated

memory map addresses are some of the configuration

possibilities.

To instantiate a component in the system model, all

this parameters must be set. Parameter values are

obtained from the values indicated in the corresponding

“HW_Instance” clause of the XML System Description

file (Figure 2). These parameters can be either defined

as explicit values (“200MHz”, “500MB”) or identified

as configurable values.

To set the parameters which are not specified in the

“HW_Instance” clause, the simulator checks the

“HW_Component” clause corresponding to the type of

component instantiated (Figure 2). Similar to the

previous ones, these parameters can be fixed or

configurable ones.

Finally, if any of the parameters has not been fixed,

the default values for this component model are

applied.

The components are also prepared to store all the

performance information required to generate the

output reports that the DSE tool analyze in order to

SW code

Tas k 1

SW
libra ry

HW
libra ry

SW code

Tas k 2

Generic

HW models

App-s pec

HW models

S imula tor

XML
config.
file s

XML
output
file

<HW_Platform>

 <HW_Components>
 ...
 </HW_Components>
 <HW_Architecture name=”arch1”>
 <HW_Instance component="AMBA" name="my_bus" />
 ...

 </HW_Architecture>
 <HW_Architecture name=”arch2”>
 <HW_Instance component="NoC" name="my_noc" />
 ...

 </HW_Architecture>
 </HW_Platform>
 <Application>
 ...

 </Application>
 <Simulation>

 < Implementation HW_Architecture=“ARCH” / >

 </Simulation>

XXIV Design of Circuits and Integrated Systems Conference Zaragoza, Nov. 18-20, 2009

pg. 373

select the optimal configurations.

B. HW components interconnection

The instantiated components must be

interconnected to create an executable system model.

To simplify the interconnection work, TLM techniques

have been used. TLM accurately describes the system

communication architecture down to the level of

individual read and write transactions. The use of

transfers instead of signals, reduce the complexity

when automatically interconnecting the system

components.

To allow easy automatic interconnection of the

system components, all component models have been

created using an generic template provided by the

simulation engine. This template is oriented to ensure

interface compatibility without limiting the component

communication requirements. Ensuring that both ends

of each interconnect have compatible interfaces, the

automatic connection is possible.

To complete the HW platform generation, it is

required the creation of the memory maps and ensure

correct interrupt delivering.

Each time a component is connected to a bus, its

associated memory area is integrated in the memory

map, ensuring that it has not been used before. The

solution is similar for networking communication.

Network models require the node identifier in order to

configure the internal routing protocols properly.

Finally, an interrupt controller is in charge of

managing the interrupt delivery. This is especially

important in multiprocessor systems, where not all

interruptions must be managed in the same way.

C. SW components instantiation

OS models and SW tasks are finally added to the

simulation as described in the XML files.

An OS is mapped to a processor or group of

processors (for SMP systems). SW tasks are associated

to an operating system, and thus mapped to the system

processors where the OS runs.

To integrate the SW tasks in the simulation, the SW

code has to be provided. The code is annotated and

compiled building a library which is added to the

simulation. The annotated code provides the

performance information required by an external DSE

tool to perform the exploration.

SW tasks are defined in the XML System

Description file indicating the name of the main

function of the task. To load the main function, the

dynamic library management is used, by calling the

dlopen and dlsym function. Additionally, other

parameters like the OS where it will run, the priority,

the policy and the main function arguments can be

defined. All these elements can be parameterized, so

the DSE flow can explore the best configuration for the

SW tasks.

 VI. EXAMPLE & RESULTS

To verify the validity and efficiency of the
proposed system description method and its integration

in an external DSE tool a large example has been

developed.

A mpeg-4 encoder example has been evaluated in a

modifiable multiprocessor platform. The platform

contains a bus, a memory and a variable number of

processors, from 2 to 8. As SW code, six different

parallelization of the mpeg system have been obtained

from the Atomium tool suite from IMEC [19].

In the example, the processors frequency, cache

size, number of processors and code parallelization

have been explored. Just to simplify the example, the

number of processors and the parallelization have been

explored together, forcing the number of processors to

be equal to the number of threads of the selected

parallelization. This is not a limitation of the tool but

an engineering decision.

Processors frequency has been set in the range of

40-200 MHz, and instruction cache sizes from 4 to 32

kB.

To perform the exploration, the DSE tool

modeFRONTIER has been used. The DSE tool created

the required DoE and the presented simulation engine

has been used to estimate the performance of each

selected configuration. The optimal platform

configuration has been decided in terms of application

SW latency and power consumption. Furthermore,

other metrics as executed instructions has been

analyzed.

FIGURE 7: XML SYSTEM DESCRIPTION FOR MPEG EXAMPLE

<?xml version="1.0" encoding="UTF-8"?>

<Description xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" name="mpeg">

 <HW_Platform>

 <HW_Components>

 <HW_Component category="bus" name="local_bus" frequency="200" />

<HW_Component category="icache" name="icache"

mem_size="__icache_size" static_power="3" read_energy="40"/>

<HW_Component category="processor" name="arm926t"

frequency="200" proc_type="arm926t" static_power="2" />

<HW_Component category="memory" name="Mem" mem_size="512M"

frequency="200" latency="10" mem_type="RAM" />

 </HW_Components>

 <HW_Architecture>

 <HW_Instance component="local_bus" name="bus" >

 <Repeat number="__num_cpus" index="i">

 <HW_Instance component="arm926t" name="Processor_%i"

 frequency="__freq">

 <HW_Instance component="icache" name="icache_%i" />

 </HW_Instance>

 </Repeat>

 <HW_Instance component="Memory" name="main_memory"

 start_addr="0x80000000" />

 </HW_Instance>

 </HW_Architecture>

 <Computing_groups>

 <Computing_group name="node1" >

 <Repeat number="__num_cpus" index="i">

 <Computing_Resource name="Processor_%i" />

 </Repeat>

 </Computing_group>

 </Computing_groups>

 </HW_Platform>

 <SW_Platform>

 <SW_Components>

 <SW_Component name="SO" type="OS" />

 </SW_Components>

 <SW_Architecture>

 <SW_Instance name="OS1" component="SO" HW_Resource="node1" />

 </SW_Architecture>

 </SW_Platform>

 <Application>

 <Functionality>

 <Exec_Component name="2" category="SW" function="par_1_main" />

 <Exec_Component name="4" category="SW" function="par_2_main" />

 <Exec_Component name="5" category="SW" function=”par_3_main" />

 <Exec_Component name="6" category="SW" function="mpa_par_4_main" />

 <Exec_Component name="7" category="SW" function="par_5_main" />

 <Exec_Component name="8" category="SW" function="par_6_main" />

 </Functionality>

 <Allocation>

 <Exec_Instance name="main_func" component="__num_cpus"

 resource="node1" arguments="run.x sequence.ctl stimuli "/>

 </Allocation>

 </Application>

 <Simulation time="2000s" end_as_sw="1" backtrace="3" />

</Description>

XXIV Design of Circuits and Integrated Systems Conference Zaragoza, Nov. 18-20, 2009

pg. 374

To demonstrate that the proposed modeling

technique is adequate for DSE, the DSE tool has been

programmed to simulate all the possible parameter

combinations. Considering that there are 6 possible

parallelization, 5 frequencies and 4 cache sizes, the

overall possible configurations are 120.

Considering that an execution of the application

SW requires about 20 seconds, the 120 executions, and

that the overall simulation time is 40 min, it can be

claimed that the proposed modeling technique for

modeling and simulating modifiable systems is feasible

for exploring the system architecture and configuration,

considering that ISS based solution can takes days in

simulating a few set of configurations.

The entire XML system description for the mpeg

example is presented in figure 7.

 VII. CONCLUSIONS

DSE is commonly accepted as a powerful solution to

optimize system design by selecting the best

configuration options for the system components. This

work demonstrates that the same flows can be also

used to optimize the elements and components of the

platform.

Common XML solutions for modeling system

platforms can be easily extended to support really

modifiable platforms. A very few set of new XML

clauses are only required for this purpose.

Using TLM based component models together with

state of the art solutions for automatic system

modeling, automatic parameterization and modeling of

modifiable platform descriptions is possible.

Furthermore, the resulting modeling technique is

efficient enough to allow exploration of highly

configurable platforms following multi-objective

optimization requirements.

 REFERENCES

[1] A. Sangiovanni-Vincentelli & G. Martin: “Platform-

Based Design and Software Design Methodology for

Embedded Systems”, IEEE Design and Test of

Computers, November-December, 2001

[2] CoWare Platform Architect. Available at

http://www.coware.com/products/platformarchitect.php

[3] ARM MaxSim Tools. Available at

http://www.arm.com/products/DevTools/MaxSim.html.

[4] The P1685 IP-XACT IP Metadata Standard. Design

& Test of Computers, IEEE, April 2006, Volume: 23,

Issue: 4, On page(s): 316- 317

 [5] K. Popovici, X Guerin, F. Rousseau, P. S. Paolucci,

and A.A. Jerraya: Platform-based Software Design

Flow for Heterogeneous MPSoC. ACM Transactions

on Embedded Computing Systems, July, 2008

 [6] L. Cai, and D. D. Gajski. Transaction Level

Modeling: An Overview. In Proc. of CODES+ISSS’03.

[7] T. Y Yen, and W. Wolf. Communication synthesis

for

distributed embedded systems. In Proc. of ICCAD’95.

[8] R. B Ortega, and G. Borriello. Communication

synthesis for distributed embedded systems. In Proc. of

ICCAD’98.

[9] S. Pasricha, N. Dutt, and M. Ben-Romdhane.

Extending the transaction level modeling approach for

fast communication architecture exploration. In Proc.

DAC’04.

[10] K. Lahiri, A. Raghunathan, and S. Dey. Efficient

exploration of the SoC communication architecture

design space. In Proc. ICCAD’00.

[11] modeFRONTIER. http://www.esteco.com

[12] Multicube Explorer:

http://home.dei.polimi.it/zaccaria/multicube_explorer/

Home.html

[13] A. Khare, N. Savoiu, A. Halambi, P. Grun, N.

Dutt, A. Nicolau, V-SAT: A visual specification and

analysis tool for system-on-chip exploration. Proc of

Euromicro, 99

[14] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A.

Jerraya. “Automatic generation of application-specific

architectures for heterogeneous multiprocessor system-

on-chip”. In Proc. DAC’01.

[15] A. Wieferink, R. Leupers, G. Ascheid, H. Meyer,

T. Michiels, A. Nohl and T. Kogel. Retargetable

generation of TLM bus interfaces for MPSoC

platforms. In Proc. of CODES+ISSS’05.

[16] H. Posadas, D. Quijano, J. Castillo, V. Fernández,

E. Villar, M. Martínez: "SystemC Platform Modeling

for Behavioral Simulation and Performance Estimation

of Embedded Systems" in the book L. Gomes and J. M.

Fernandes: “Behavioral Modeling for Embedded

Systems and Technologies: Applications for Design

and Implementation”, IGI Global. 2009-07

[17] Magillem 4.0, http://www.magillem.org

[18] NAUET Design Assembler, www.mataitech.com

[19] Atomium tool suite, www.imec.be/atomium

XXIV Design of Circuits and Integrated Systems Conference Zaragoza, Nov. 18-20, 2009

pg. 375

