COMPLEX Eclipse Framework

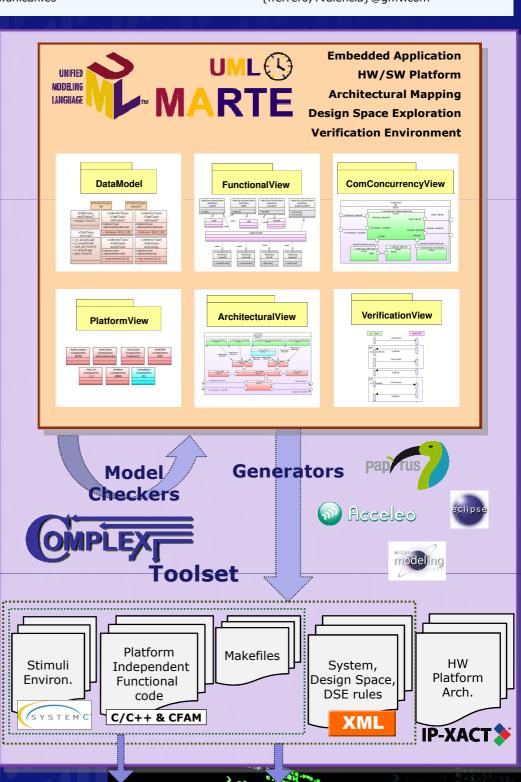
DSE

(z.i = /

W = sqrt((sqrt(z.r*z.r · z:

http://complex.offis.de

University of Cantabria Microelectronics Eng. Group



GMV Aerospace and Defence S.A.U

F. Ferrero & R. Valencia {fferrero, rvalencia}@gmv.com

F. Herrera, P.Peñil & E. Villar {fherrera, pablop, evillar}@teisa.unican.es

- √ Graphical (UML, MARTE)
- √ Based on Standards
- √ Separation of functional and non-functional concerns
- √ Following Model Driving Architecture paradigms
- √ Component-Based
- √ Synthetic
- √ Allows system specification
 - Application SW
 - HW Platform
- √ Support to Verification **Environment definition**
- ✓ Support to DSE
 - Specification of Design Space (DSE parameters and set of architectural mappings)
 - DSE constraints and Rules
- √ Fully integrated with Eclipse
- **✓ Model Checkers:**
 - Verification of compliance with component model
 - User support
- √ Generators:
 - Automatic generation of text-based system representation
 - Easily customizable
- Scalable and configurable
- Text-based representations in standard formats
- √ SystemC Executable model for functional verification
- √ Performance model for DSE
 - Fast (Native) simulation
 - Output: Application and system performance metrics
 - No recompilation required for DSE iterations

SYSTEMC

Executable

Model

1(flo

fcomplex c in (Sarting result) else {

fcomplex Cinv(fcomplex z)

Performance

Executable Model