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ABSTRACT
Designing system architecture is still an error-prone process
and a great challenge. The development of complex embed-
ded systems like radar systems is very cost-intensive. There-
fore it is important that system architects are supported by
appropriate tools. Our UML-based process focuses on vali-
dating the architecture against system requirements and an-
alyzing the impacts of requirement or architectural changes.
In this paper we present a supporting tool providing automa-
tization possibilities for the validation process. This is a ma-
jor breakthrough as it reduces the need for repetitive, time
consuming and mindless validation process to be conducted
manually. The tool is able to handle all the requirements,
including the requirements’ interconnections with one an-
other, and increase process usability.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Validation—sys-
tem architecture, requirements, simulation

General Terms
Design, Verification

Keywords
Validation, system architecture, simulation, model-driven,
UML

1. INTRODUCTION
The general technological progress allows for the develop-
ment of embedded systems with increasing complexity. This
involves a rising number of requirements including their de-
pendencies among each other. Therefore the challenges of
designing a good system architecture are to identify the rel-
evant requirements and to analyze the impact of changing
the requirements on the architecture. Every time require-
ments are changing the architect has to revalidate the archi-
tecture. This time-consuming task should be supported by

convenient tools that reduce the need for the process to be
completed manually.

In this paper we describe our proposed process [1] [2] and
present a tool that helps the architect improve system de-
velopment. Our approach defines a model-driven validation
process based on the Unified Modeling Language (UML) and
simulations as validation technique. By defining validation
targets, architecture-specific aspects, assigned with archi-
tecture relevant requirements a validation specific view is
created. It enables the architect to handle all requirements
with their interconnections and to analyze the impact of re-
quirement and architecture changes. For every validation
target the architect configures an examination simulation to
validate the target against the assigned requirements. The
architecture is only valid if all validation targets are valid.
After modifications of the architecture or changes to the re-
quirements the architect must rerun the validation process.
The process provides automation possibilities to minimize
this effort. It improves the quality of the requirement and
architecture change management and of the system design
process leading to a higher quality of the system architec-
ture.

Section 2 describes briefly the validation process, which is
applied to an example from the area of embedded systems
in section 3. The support tool is described in section 4.
Section 5 describes our experience with the approach and its
benefits. Section 6 presents related work for the approach
and the support tool before section 7 concludes the paper.

2. VALIDATION PROCESS
There are many definitions of the terms validation and ver-
ification in literature [3] [4] [5] [6] [7] [8]. For our work
we generally define validation as a process performed dur-
ing or at the end of a development phase to check the re-
sulting artifact(s) against the corresponding requirements
specified prior to the phase. Verification is a process per-
formed for approval of system parts or the entire system.
The main differences are the checked artifacts and the point
of time in system engineering at which the process is applied.
Figure 1 illustrates the process by an UML activity diagram.
In the first step the architect has to identify the architec-
ture relevant requirements to determine the validation tar-
gets. A validation target sums up all requirements of one
architecture-specific aspect and does not possess compara-
tive values. All together they create an abstract layer suit-
able for architecture validation. Each target is connected to
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Figure 1: Process for system architecture validation

at least one architecture-relevant requirement whereas one
requirement can be associated to several targets. In the next
step the architect has to define examination simulations for
each validation target. The examination simulation is a pro-
cedure to check if the architecture matches the correspond-
ing requirements. The data source for these simulations is
the validation model which contains only validation relevant
data unlike the development model containing all develop-
ment relevant data. The validation model provides a view
concealing all non essential architecture validation relevant
data from the architect. Knowing the examination simula-
tion the architect can define the validation target specific
notation to define how the input data for the simulation is
added to the validation model. For creating the notation our
approach uses the UML profile mechanism. The architecture
is entirely validated by running all examination simulations
and comparing the results with the comparative test values
of the implicit associated requirements (see action run sys-
tem architecture validation). The system architecture val-
idation fails when the assigned simulation cannot validate
one or more validation target. In this case the architect must
adjust the architecture in the validation model and rerun the
architecture validation. The system architecture validation
succeeds only if all validation targets are valid. Architecture
modifications relevant for the development model are trans-
formed from the validation model. The process has to be
restarted if new requirements are gathered or existing ones
are deleted. If comparative values are changed, the architect
can skip the first steps and must only rerun the architectute
validation. The process terminates with the requirements
freeze. Detailed information can be found in [1] and [2].

3. EXAMPLE OF USE
The example in this paper is reused from a previous experi-
ment [2] but extended for the purpose of demonstrating the
support tool that is not described in the previous work [2].
We also use an improved simulation technique. The exam-
ple is from the area of embedded systems: a simplified radar
system. It receives echoes of electro-magnetic signals from

Figure 2: Software view of a simplified radar pro-
cessor in development model

an antenna, processes these data in real-time and provides
visible tracks on a radar display. Figure 2 illustrates the soft-
ware view of the radar processor in the development model
containing nine software components. It shows that in a
radar processor the data processing is almost sequential. It
is only separated by data processing variants due to different
types of signals which are in our example: sea targets, air
targets and near range targets. These signals are character-
ized by different electro-magnetic wave forms and processing
algorithms allowing the radar engineer to detect objects in
a short or far away distance with different resolutions. E.g.
objects on surface of the water are usually not very fast in
comparison with missiles in the air and therefore they have
to be treated differently. The overall goal is to filter out sig-
nals reflected by objects in radar range which the radar engi-
neer does not want to see on his radar display. These tracks
depend on the field of usage; e.g. air surveillance radars at
airports need to detect not only planes but also groups of
birds because they are a threat to airplane engines. The
system processes a continuous stream of data so that the
computing performance for data of a certain point in time
is influenced by the processing of past and future signals.
In the development model each software component (UML
component with stereotype software) has to have a depen-
dency connection with stereotype executedOn to a hardware
component indicating its execution environment. In our ex-
ample there are three hardware boards with two processing
units, one microprocessor and one Field Programmable Gate
Array (FPGA), each. The software component interfaces are
mapped to the physical ones represented by ports on UML
components with stereotype hardware allowing the architect
to trace data flow on the hardware and to overview depen-
dencies between the boards.
According to the first step in the validation process (see Fig-
ure 1) the architect detects validation targets from system
requirements. For that reason he identifies the following six
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Figure 3: Validation target specific notations

architecture relevant requirements:

• The system shall provide tracks for fed in test data
after 320ms. (A1)

• The system shall provide plots for fed in test data after
280ms. (A2)

• The system shall be able to compute 3500 MiBit/s
data received from antenna. (A3)

• The system shall consume less than 220W. (A4)

• The temperature of each FPGA shall be less than
50◦C. (A5)

• The temperature of each microprocessor shall be less
than 70◦C. (A6)

The first three non-functional requirements can be assigned
to two validation targets (VT). A1 and A2 deal with the
processing time of the system (VT1), A3 with the commu-
nication infrastructure (VT2). A4 can be assigned to the
aspect energy consumption (VT3) and A5 and A6 to hard-
ware temperature (VT4). The next steps are to define the
examination simulation and the validation target specific no-
tation for each target. Figure 3 shows the UML profiles used
for validation target specific notations. VT1, VT3 and VT4
are combined in one profile because VT3 and VT4 depend
on the examination simulation of VT1. The processing time
to provide tracks and plots is calculated by required float-
ing point operations of the software components. That is
why the stereotype software has the tagged value mflops
specifying needed floating point operations for the software
component. The stereotype hardware has the tagged value
performance providing the performance of processing units
in MFlop/s. In order to calculate system’s processing time
we have to consider the amount of parallel processed soft-
ware components on the same processing unit influencing the
performance available for assigned software components. If
we assume linear energy consumption and linear tempera-
ture rising for processing units in combination with a basic
value, these data can be calculated by using processing unit
load deduced by VT1’s examination simulation. We add
the tagged values energyConsumption and basicEnergyCon-
sumption to the stereotype hardware as notation for VT3
and temperature and basicTemperature for VT4 (see Figure
3). For VT2’s examination simulation the bandwidth of the
communication device from antenna to radar system is re-
quired. We add the stereotype communication with tagged
value bandwidth to the association representing physical link

Figure 4: Extract of the validation model

between the board and the hardware component executing
the first software component in the processing chain.

After the determination of the validation targets, their cor-
responding examination simulations and notations, the ar-
chitect creates the validation model using the support tool
described in section 4.2. The tool loads the development
model, lists all available elements according to the model
tree and enables the architect to select validation relevant
structural and behavioural elements and to transform them
into the validation model. After transformation the archi-
tect can add missing validation-specific data (e.g. amount of
flops required by software components) by using the UML
profiles. Figure 4 shows an extract of the resulting validation
model. The results of the system architecture validation,
i.e. of the four validation targets, are shown in table 1 to 3.
The system architecture passes the validation and therefore
fulfills the regarded system requirements. There has been
no architecture modification in the validation model so that
synchronization of the validation and development model is
not necessary. In the course of system development require-
ments are changing. In our example the customer changes
requirement A1: Tracks shall be provided after 310ms in-
stead of 320ms. This modification causes no change to the
validation targets itself because they are defined indepen-
dently from specific values. According to the validation pro-
cess (see Figure 1) the next step is run system architecture
validation. It fails because VT1 cannot be validated: 313ms
is greater than 310ms. The architect has to change the ar-
chitecture in order to fulfill the new requirement. He tries
to increase performance by assigning the software compo-
nent sweep processing to the PowerPC of Board 2. This
modification is memorized because it has to be transferred
to the development model in case of a successful validation.
Although VT1 is valid after this architecture modification,
the validation fails due to energy consumption. The sup-
port tool provides an overview of the validation status by
a color-coded list of the validation targets for the architect
(see figure 6). Each target is colored accoording to its sta-
tus whereas green means valid and red means invalid. The
detailed results of the simulation are shown in table 4 and
5. The tool processes data for graphical presentation to
support the architect in analyzing simulation results. Unlike
formal techniques the dynamic model-driven simulation pro-
vides not only final but also interim values. Those support
the architect in analyzing failed validations. An example
is the presentation of the processor load according to the
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Table 1: Result First Simulation VT1
Data Processing time [ms]
Tracks 313
Plots 277

Table 2: Result First Simulation VT2
Communication line Bandwidth

[Mibit/s]
Antenna - radar processor 5200

simulation time in an coordinate system. By analyzing the
data of all performed examination simulations the architect
is able to identify the problem. The processing unit load
of the PowerPC on Board 2 increased due to raising energy
consumption which cannot be compensated by decreasing
energy consumption of the FPGA on Board 2. The architect
restores the former architecture in the validation model, ex-
changes the software components burst processing and near
range target processing and reruns architecture validation.
The validation for each target succeeds resulting in transfer-
ring all modifications to the development model. Thus the
two models are synchronized.

4. SUPPORT TOOL
The four actions highlighted in figure 1 indicate automation
and support possibilities of the process provided by our sup-
port tool. Figure 5 shows the five use cases available for the
architect. Section 4.1 goes into detail for manage validation
targets, support impact analysis and manage requirements.
Section 4.2 addresses model-to-model transformations and
section 4.3 focuses on a model-driven examination simula-
tion for heavily dependent validation targets.

4.1 Validation Target Management
Applications like Rational DOORS are capable of managing
requirements. By adding attributes it could be possible to
manage validation targets in some manner. However, the
possibilities to directly start the assigned examination sim-
ulation, to compare the examination simulation results with
the comparative values, to persist and restore validation re-
sults and to evaluate requirements and validation target de-
pendencies are not available in such tools. For these reasons
we developed our own managing tool for validation targets
enabling the architect to handle the targets and the assigned
requirements. The architect can import requirements from
an external Requirements Management Tool by a XML or

Figure 5: Use case diagram of the support tool

Table 3: Result First Simulation VT3 and VT4
Processing
Unit

Processor
load [%]

Tempera-
ture [◦C]

Energy
[W]

B1 FPGA 86 47 34
B1 PowerPC 8 52 38
B2 FPGA 84 45 33
B2 PowerPC 8 52 38
B3 FPGA 17 38 26
B3 PowerPC 23 67 48

Total energy consumption 217

Table 4: Result Second Simulation VT1
Data Processing time [ms]
Tracks 306
Plots 270

spread sheet interface into an empty or existing set of re-
quirements and validation targets. If existing requirements
are changed by importing a requirements file, the require-
ments and the assigned targets are highlighted. The archi-
tect can manage validation targets including the assignments
to the architecture-specific requirements. For the validation
targets he has to choose comparative values and examina-
tion simulations. The architect can start the validation of
the entire architecture or even for single targets and present
the results in a graphical overview (see figure 6). Several
filters enable the architect to handle the amount of require-
ments and their interconnections. Requirements without an
association to a validation target can be filtered and dis-
played. It is possible to show all assigned requirements of a
selected validation target as well as all assigned validation
targets of one selected requirement. Furthermore the tool
lists all indirect connected validation targets by analyzing
the assigned requirements and evaluating their connections
to other requirements. If those requirements are assigned
to another validation target than the selected one it is dis-
played by the tool including the connecting requirements.
This view supports the architect to identify complex depen-
dencies between validation targets and helps to realize the
impact of certain requirements on the system architecture.

4.2 Model Transformation Support
The support tool does not only manage the files of the devel-
opment and validation models but also provides model syn-
chronization and transformation of elements between them.
Development and validation information are separated in
our validation process to avoid information overkill in the
development model and to enable the disengagement of data
in the validation model from data in the development model.
Thus, the validation relevant data is independent from changes
in the development model caused by development progress.
These advantages come at the price of extra effort for creat-
ing the validation model, for synchronizing the data and for
checking consistency. The effort can be reduced by using the
meta model based modeling language UML for documenta-
tion. If development and validation model are based on the
same meta model, modeled data can be transformed from
one model to an existing or new one without great effort.
Modeled data can be checked against self-defined rules to
ensure consistency and it can be synchronized by analyzing
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Table 5: Result Second Simulation VT3 and VT4
Processing
Unit

Processor
load [%]

Tempera-
ture [◦C]

Energy
[W]

B1 FPGA 86 47 34
B1 PowerPC 8 52 38
B2 FPGA 66 40 30
B2 PowerPC 28 69 52
B3 FPGA 15 36 25
B3 PowerPC 21 60 47

Total energy consumption 226

Figure 6: Color-coded validation target overview ac-
cording to validation status

and comparing model content.

4.3 Simulation Management
The support tool manages the examination simulations of
the validation targets and provides an interface for reading
data from the validation model. This data can be utilized
by the simulations as data source for their algorithms on
the one hand and to configure the simulation, e.g. the hard-
ware infrastructure or the software-hardware mapping, on
the other hand. The simulations provide their results over
an universal result interface whereby the tool updates the
validation status of the targets and the whole architecture
accordingly. These interfaces enable the architect to use
simulations suitable for the level of detail in the current de-
velopment status and to modify the architecture without
reprogramming the simulations. For the radar system we
developed a simulation considering multiple validation tar-
gets. Although the level of detail is not high, even domain
experts cannot foresee the simulation results because there
are to many influencing factors.

5. BENEFITS AND EXPERIENCES
Our approach has been developed with the help of projects
of the SOPHIST GmbH1 and our experiences from devel-
opments of embedded systems. One of the projects has to
deal with about 40 processing units and 70 software com-
ponents. The used examination simulations are generally
similar to the introduced example. Our experience shows
1http://www.sophist.de/en/start

that extra work caused by this validation process amortizes
within few iterations of system architecture design and re-
quirement changes. According to our field trials the ap-
proach can be learned in a one day workshop for experienced
system engineers, beginners require two days. The benefits
of our approach can be outlined as followed:

• It can be integrated into iterative architecture design
improving the quality of the process.

• The required time and effort for system architecture
validation can be reduced by automation of examina-
tion simulations and of validation process’ steps.

• The validation targets create an architecture-specific
view allowing the architect to keep track of all relevant
requirements including their dependencies, direct and
indirect.

• The architect can analyze the impacts of requirement
changes on the architecture via their connections to
the validation targets.

• The validation process also indicates secondary effects
of architecture changes.

• Separation of validation and development data allows
independent working on both models.

• UML profile mechanism enables the architect to add
arbitrary validation-specific data without much effort
and independently from other notations.

6. RELATEDWORK
The elicitation of requirements in particular non-functional
requirements is not part of our approach. Nevertheless, non-
functional requirements are considerable for architecture de-
sign and therefore we require a preferably complete set of
non-functional requirements satisfying basic quality proper-
ties like testability or unambiguousness. An example for a
suitable approach is described in [9]. This systematic elic-
itation process allows finding inconsistent and conflicting
requirements based on a requirements meta model. This
model could also be supportive for indentifying architecture
relevant requirements to determine validation targets and
examination simulations.

According to [10] the simulations used in our approach can
be classified as dynamic validation technique in contrast to
formal techniques like model checking or theorem proofing.
The simulations are evaluating the system behaviour based
on data modeled in UML. This semi-formal modeling lan-
guage does not have the accuracy of the mathematical mod-
els normally used by formal verification techniques. [11]
describes a system design verification approach using the
object-oriented equation-based modeling language Model-
ica. The data required for verification is added to an UML
model by the ModelicaML UML profile. The formalized
requirements are observed by violation monitors, roughly
comparable to the validation targets. The main target of
the approach is the detection of design errors whereas our
approach answers the question: Could it be possible to sat-
isfy the requirements? Similar approaches due to the main
target are e.g. [13] dealing with hard real-time systems, [12]
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using modeled data for system testing and [14] providing
an development approach for the automotive domain. The
focus of the latest is more on software than on system archi-
tectures using AUTomotive Open System ARchitecture.

Adding information to the model is done by using default
UML elements and elements provided by domain specific
profiles like MARTE, SysML, AADL or EAST-ADL. How-
ever, these profiles do neither provide a process for architec-
ture validation nor allow adding arbitrary data. Therefore,
our approach uses the UML profile mechanism to create val-
idation specific profiles to add data which cannot be added
by existing profiles.

Scenario-based analysis methods for software architectures
like SAAM or ATAM [15] can also be applied on system ar-
chitectures2. Nevertheless, they are evaluating a set of archi-
tectures according to chosen quality properties to select the
one that fits best. Our approach focuses on finding valid ar-
chitectures which could be analyzed by those methods after-
wards. There is a validation and verification component for
the tool Simulink3. It requires detailed information about
the developed system which is not necessarily available at
system design level. Although it would be possible to val-
idate the entire architecture even in an early development
phase using the harness model, the main focus of Simulink
is on developing single parts, e.g. FPGAs, of the system.
Nevertheless, Simulink does not use UML for modeling and
the mentioned component is restricted to functional and se-
curity requirements.

The support tool is highly specific to the validation process.
It provides a model-driven simulation to deal with heavily
dependent validation targets. [16] describes an approach to
distribute simulation code to different processing units by
changing the virtual machine code leaving the simulation
code unmodified. This could be used for a radar simulation
based on a detailed system architecture. However, there is
no radar simulation available which can be configured by an
UML model and adjusted to different level of details.

7. CONCLUSION AND FUTUREWORK
In this paper we presented a tool supporting the architect
in validating the system architecture against system require-
ments. It provides data management, model transformation
and simulations reducing the validation effort and enabling
the architect to analyze the impact of requirement and ar-
chitecture changes on the validation status of the system
architecture. Currently our approach and the supporting
tool are applied to another domain, the domain of business
processes. First results are promising.
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ABSTRACT
Verification of functional and non-functional requirements
throughout the design process is a cost-effective solution
when compared to a build-test validation process. By us-
ing a model based design process and by describing system
behavior with a formal model, model checking becomes a
viable solution to perform requirement verification at early
stages of the design process. This paper presents how the
HiLeS ADL can be used to express the behavior of the sys-
tem with a Petri Net and how to use that representation to
perform system verification. HiLeS is used as a intermediate
stage of a model driven automated virtual prototype design
framework, in which SysML is used for capturing require-
ments and system modeling.

Categories and Subject Descriptors
B.6.2 [R]: eliability and testing; B.6.3 [D]: esign Aids; D.2.2
[D]: esign Tools and Techniques

General Terms
ADL; Model Driven Technichs, Verification

1. INTRODUCTION
Embedded system design is a challenging domain, in which a
set of requirements must be transformed in a detailed speci-
fication that can be used for manufacturing. Many works are
trying to find a cost effective way to do the task, with solu-
tions that range from proposing languages for system model-
ing [13], methodologies that define the necessary steps of the
design process [18], all the way through tools that automate
the design steps (usually transformations from abstract de-
scriptions to more detailed ones) [16].

However, no matter which of the approaches is taken, the
cost of manufacturing an embedded system is too high to
perform a build-test validation process. To overcome this,
verification of the design with respect to the functional and

non-functional requirements should be carried out through
the design process [5] and ideally as early as possible where
it is more cost effective.

According to the embedded design scenario presented by
Gajski [7], there are four phases each one identified by an
abstraction layer of the Y-Chart: system, processor, logic
and circuit. In each of the phases a particular language can
be used to describe the system at the corresponding level.
At lower levels of abstraction, Virtual prototypes1 can be
used to validate the system requirements by simulation. At
higher levels of abstraction (i.e., system and processor), sys-
tem components are described with nondeterminate speci-
fications that give constraints on the behavior, but not the
details of the behavior of the simplest components them-
selves. These levels of abstraction and the simplification
they provide help model checking and formal verification at
an early design phase. Further, if the description language
used is based on a precise mathematical model, or a Model
of Computation (MoC), verification can be done with tools
of guaranteed performance.

This paper presents an extension to the work presented
in [14] with emphasis in the support for early design for-
mal verification. In [14] SysML is used as the language
to describe the embedded system at the system level and
HiLeS as the Architecture Description Language to describe
the system at the processor level. We use a limited set of
SysML diagrams and diagram elements to build the system
level model based on the EIA-632 Systems engineering pro-
cess [15]. The SysML model is used to capture requirements
and to define the Logical Solution of the system. The logical
solution describes the structural and behavioral aspects of
the system. The HiLeS [11] formalism and its tooling allow
designers and engineers to produce a high level design defin-
ing the functional decomposition, hierarchy and structure
of the system. HiLeS proposal is based on a global system
design methodology and a formal behavioral model based
on Petri Nets. In our work, in order to improve the design
process of embedded systems, from the system to the logic
levels, we seek to provide tools to automate the synthesis
process2 and to support the validation and verification at

1Graham Hellestrand, How virtual prototypes aid SoC
hardware design, http://www.embedded.com/columns/
technicalinsights/20300463
2
synthesis, as proposed by Gajski [7], is the process of con-

verting a model of the system at a given abstraction layer
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the different abstraction levels.

Since the HiLeS formalism is based on Petri Nets the pro-
cessor model can be used for formal verification and model
checking. Further, since we generate automatically the HiLeS-
T model from the SysML model, using model driven tech-
niques, the verification process can be done at an early de-
sign phase. In our work we focus on soft real-time only hard-
ware systems. In the case of soft real time systems, timing
requirements specify the average time that system response
to events must be kept3. Since we are interested in timing
aspects, we have extended HiLeS to HiLeS-T where the MoC
is based on Timed Petri Nets (TPN). Activity constraints
are used in the SysML model to express timing requirements
as duration constraints on activities. As part of our work,
we have extended HiLeS into HiLeS-T to:

1. Facilitate the synthesis from SysML to HiLeS-T. Al-
though HiLeS behavior representation allows us to pre-
cise the semantics of activity diagrams new concepts
where needed to support some of the activity diagram
elements, more precisely interruptible regions.

2. Support ordinary Timed Petri Net as part of the HiLeS-
T behavior representation (or HiLeS Control Net), so
behavior verification (liveness, deadlocks, etc.) could
be performed taking time requirements into account.

3. Facilitate the synthesis from HiLeS-T to Hardware De-
scription Languages. We added support for vector
ports and specialized data flow connectors to math
more easily the connector types supported by VHDL-
AMS and Verilog-AMS.

This paper presents how HiLeS-T is used to represent system
behavior, how to perform behavior verification and how time
requirements can be added to the model to further allow
time-dependent verification. Section 3 how to use SysML
for system level modeling and time requirement specifica-
tion and Section 4 presents HiLeS-T. Section 5 presents the
verification process. Section 6 presents related work and
section 7 concludes.

2. OVERVIEW
Testing is still the primary technique for validation and its
cost can be as high as 50% to 70% of total development [17].
As shorter times to market are demanded by market trends,
it is no longer economically viable to wait for building the
System-on a Chip (SoC) to carry out all the validation pro-
cesses. By using a model based design process, model check-
ing becomes a viable solution to perform verification and
validation at early stages of the design process. In order
to provide model checking of concurrent systems with con-
straints on time, Timed Petri Nets have been proposed as
an alternative to timed automata [2]. An important inter-
est of TPNs, and PNs in general, lies in their applicability
to the verification of boundedness, coverability, reachability,
and other properties in infinite-state systems. In a TPN, a

to a lower (more detailed) one.
3Douglass, B. P. 2001. Capturing real-time requirements.
http://www.embedded.com/9900356

transition can be fired if it is enabled (every input place con-
tains the required number of tokens) and if the time since it
has been enabled lies in the specified firing interval.

As mentioned previously the HiLeS-T formalism has a be-
havior model based on TPN, known as a HiLeS Control Net
(HCN). The HCN serves two purposes: i) express the be-
havior of the system as a sequence of component executions
(parallel execution is allowed); ii) Capture the time execu-
tion information of components (in the transition’s firing in-
terval). In the case of system verification, the time execution
information is the desired execution time of the component,
i.e., the time requirements. In order to do model checking,
we have to extract from the HCN the TPN for what we use
a model transformation.

Figure 1: HiLeS Model transformation chain

In our approach we use model driven techniques (MDT) to
provide automatic synthesis from the system level model to
the logic level model. To do so we have built a model trans-
formation chain (MTC) that covers three of the domains of
a design process: system, processor and logic. At each of
these levels we have chosen a specific language for modeling:
SysML for system, HiLeS for processor and VHDL-AMS or
Verilog-AMS for logic. To provide verification capabilities
at the processor level the MTC also covers the Timed Petri
Nets domain.

Figure 1 presents an overview of the MTC. Model transfor-
mations T1 and T2 provide the synthesis from system to pro-
cessor and from processor to logic levels respectively. T3 is a
model to text transformation that generates either VHDL or
Verilog code. T4 is a transformation from the HiLeS model
to a TPN model (TPN extraction) and T5 is a model to text
transformation to represent the TPN in a textual format
understandable by the PN analysis software. In our case we
use TINA [1] as the model checking tool for PN analysis.
(pegamento)

Figure 2: HiLeS Control Net

Figure 2 presents what can be considered the building block
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of the HiLeS Control Net and represents the interaction be-
tween the Time Petri Net elements of the HCN and a system
component. System components are represented by blocks
in the HCN. When transition T1 fires block B1 is signaled
to start execution. Execution time of B1 is associated to
transition T2. Since the place P2 has a token, transition
T2 is enabled but will no fire until some time into the firing
interval has elapsed.

3. SYSML MODELING & CASE STUDY
In [14] we introduced a simple tank level control for a sugar
cane production system, as presented in figure 3. The system
under design (SUD) consists of a level control for the tank,
which signals the evaporator when the tank is full and the
vacuum pans when the tank is empty. The global require-
ments of the system can be expressed in natural language
as follows:

The tank level must be calculated based on the
tank’s input and output flows. A full alarm is
generated if the tank is at or over 95% capac-
ity and an empty alarm is generated if the tank
level is bellow 5%. Both alarms must be gener-
ated with a maximum delay of 100ms after the
respective level has been reached. The full and
empty alarms must signals the Evaporator sys-

tem and the Vacuum Pan system respectively.
Flow and alarm signals are 4-20 mA.

Figure 3: Sugar cane process

After a requirement analysis [10, 4] the design engineer can
then expand this requirements to derive the system tech-
nical requirements and use SysML requirement diagrams
to capture them. Figure 4 presents a (partial in order to
limit the scope of the paper) SysML requirement diagram
with the functional requirements of the system, derived from
the stakeholder’s requirements. The stakeholder require-
ments are placed outside of the Functional package. Table 1
presents details of the system requirements which we will
use during the following sections as part of our case study.

After the requirements have been captured, the designer
builds the Logical Solution, which is used to define the struc-
tural and behavioral features of the SUD. In the structural
part, the system is broken down into hierarchical compo-
nents. Figure 5 presents a partial view of the system’s block
definition diagram (bdd). It can be seen that the system
has a Flow Processor component which is responsible for
the level calculation and alarm generation. This compo-
nent is composed of the Level Calculator and Action com-
ponents. The Level Calculator is responsible for performing
the analog to digital conversion (req SF:0001) and calculat-
ing the tank level (req SF:0002). The Action component

Figure 4: Sugar cane system functional require-

ments

is composed of a emptyAlarm and an overflowAlarm (both
of which are Alarm Generator Components). These com-
ponents are responsible for comparing the tank level with
the control levels and generating the respective alarm (req
SF:0003 and SF:0004).

Figure 5: Sugar cane block definition diagram

3.1 Activity diagrams & Time requirements
The bdd is good for defining what components are need to
provide the required functionality but it does not provide
any behavior information and hence it can not naturally be
used to represent time requirements. Different diagram are
available if SysML for behavior representation. In [14] we
used sequence diagrams, which how now been replaced by
activity diagrams for two reasons: i) we believe that for sys-
tems that are only hardware an action invocation semantics
suits better than an message send/receive one; ii) activity
diagrams are based on PNs and synthesis of the behavior
from system to processor level is easier.

In order to express time requirements in activity diagrams
we use Local Postcondition Duration Constraints. The first
step is to associate the time requirements to a component in
the system. This can be easily done by analyzing the func-
tional requirements and identifying to which of the proposed
components does the requirement affect. The use of activity
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Table 1: Partial SUD Requirements

Id Name Text
S01:001 OverflowAlarm A full alarm is generated if the tank is at or over 95% of its level
S01:002 EmptyAlarm An empty alarm is generated if the tank level reaches or is bellow

5%
S01:003 SignalInterface Flow and alarm signals are 4-20 mA
S01:004 AlarmDelay Alarms must be generated with a maximum delay of 100ms after

the respective level has been reached
SF:0001 FlowSignalCapture ADC with 12bit resolution for flow signal capture
SF:0002 TankLevelCalculation Tank level must be calculated from input and output flows
SF:0003 FullAlarmGenerator Generate an alarm signal when level >= 95%
SF:0004 EmptyAlarmGenerator Generate an alarm signal when level <= 5%
SF:0005 LevelCalcuationTime Calculation time < 50ms
SF:0006 LevelComparitionTime Comparition time < 10ms
SF:0007 CaptureTime Flow capture time < 5ms

partitions (also known as swim-lanes) in activity diagrams is
one of the solutions for linking behavior to structure [6]. In
our approach we use Call Behavior Actions to represent the
invocation of the functionality of a component and with the
use of activity partitions we can specify what component is
responsible for executing the action. Figure 6 presents the
activity digram of the action component. An activity par-
tition is used to specify that the Format action is executed
by the formatter component and the Alarm action is exe-
cuted by the empty and overflow component. Requirement
SF:0006 states that the time to compare the level and gen-
erate an alarm should be less than 10ms. We have added a
duration constraint to the decision node and the alarm activ-
ity to capture this information. The duration constraint is
represented with a note attached to the node with the Local

Postcondition Duration Constraint tittle, and the constraint
expressed as an integer. In this case we have selected 3ms
as the constraint to keep the execution below the 10ms.

Figure 6: Flow processor component activity dia-

gram.

4. HILES-T & TPN
The HiLeS-T formalism provides a formal hierarchical struc-
tural description of a system and a precise semantics to
represent its behavior based on Timed Petri Nets. HiLeS
supports asynchronous and concurrent behaviors and mixed
representations with event driven dynamics. This character-
istic allows modeling of heterogeneous systems (most mod-
ern embedded systems are heterogeneous in nature), i.e.
they include multi-domain physics and multidisciplinary do-

mains (digital and analog electronics, software, RF, optics,
mechanics, and so on).

HiLeS-T semantics is an extension to Timed Petri Nets and
defines the interaction between the architectural components
of the system having into account that the components have
a finite duration. The extension consists in considering sys-
tem components, represented by structural or functional
blocks, as part of the PN. Specifically they act as places,
meaning that arcs can be connected from transitions to
blocks and from blocks to transitions. From an execution
point of view, when a transition fires it places a token on
the blocks connected to its output arcs and for a transition
to fire, in all places and blocks connected to its input arcs
tokens must exist.

To perform model checking with PN analysis tools, the TPN
must be extracted from the HiLeS-T model in order to re-
move the blocks and leave a “pure” TPN. Since it is re-
quired that the TPN holds the time requirements informa-
tion we defined a method for translating duration constraints
into the HiLeS-T model so that they would be maintained
during the TPN extraction. The execution of the HiLeS-
T Control Net (HCN) presented in figure 2 is as follows:
when T1 fires, it places a token in block B1. According to
the HCN semantics, B1 will “hide”the token from T2 till it
completes executing. After B1 finishes executing, it shows
the token to T2 which can be fired because it is enabled.
The same behavior could be represented with a TPN if the
execution time of B1 is associated to transition T2 i.e., by
associating the execution time of B1, tE to both limits of
the firing interval of T2 and removing B1 (TPN extraction).
From an execution point of view after a token is placed on
P2, T2 will not fire until tE has elapsed, which is the same
behavior of the HCN. To provide a very simple worst-case
execution time analysis, we use the time requirement infor-
mation associated to a component to set the lower limit of
the transition firing interval and a 10% increment for the
upper limit.

5. VERIFICATION WITH TINA
Listing 1, presents line 17 of the net file for the Sugar Cane
system (.net PN format compatible with TINA), as a re-
sult of extracting the TPN of the system and generating its
textual representation.
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Listing 1: Sugar Cane TPN in net format

1 t r ActionEmtpy T1 [ 5 , 6 ] ActionEmtpy P2 −> ActionControlFlow13 P

Listing 2: Sugar Cane TPN reachability analysis

1 # net SugarCane , 26 p laces , 23 t r a n s i t i o n s #
2 # bounded , not l i v e , not r e v e r s i b l e #
3 # abs t r a c t i on count props p s e t s dead l i v e #
4 # s t a t e s 33 26 ? 2 2 #
5 # t r a n s i t i o n s 46 23 ? 5 0 #

The square brackets are used to indicate that the interval is
closed, ], or opened, [, and a w[ indicates infinite. Transi-
tion ActionEmtpy_T1 which corresponds to the EmptyAlarm

component was assigned a local postcondition duration con-
straint of 5ms to keep the level comparison and respective
alarm generation below 10ms (requirement SF:0006). The
interval is then set to [5,6], since the interval only accepts
integers.

Listing 2 presents the result of a reachability analysis per-
formed with TINA. The first thing to notice is that the net
has 2 dead states, meaning that there two deadlock states
and of unfireable transitions. Taking a look at the rest of
the analysis results we get a list of dead transitions: FlowAc-
tuators T1 ControlFlow T1 ControlDisplay T2 ControlDis-
play T1 ActionJoinNode1 T1. With this information and
the reachability graph we trace the deadlock to the join node
of the action activity (figure 6). The dead lock exists because
two control flows entering the join come from a control path
with a decision node, i.e., only one of the two paths will
carry tokens. This is fixed by adding a merge node before
the join node as presented in figure 7. Further, the TPN can
be used as described in [19] to perform a reachability anal-
ysis that can detect PN states that are unreachable due to
time constraints (the details on how to perform this analysis
are out of the scope of this paper).

Figure 7: Fixed action component activity diagram.

6. RELATED WORK
Model-based engineering to build embedded systems is a
field in expansion. Many of these works are motivated by
the possibility of raising the level of abstraction of the archi-
tecture and design of the system and to perform, on these
higher-level models, cost effective tasks of verification and
validation.

According to the embedded design scenario presented by

Gajski [7], there are four abstraction domains of an embed-
ded system (system, processor, logic, circuit) and, at each
one, a particular language can be used to describe and an-
alyze the system. Here we do not intent to make an ex-
haustive comparison with the related work but to illustrate,
using the Gajski framework, where is placed our work and
what is its main contribution.

At the system level which is the highest, several works have
been proposed for such a language and many of them are
based on UML. [8] presents a comparison of some related
UML approaches that include time constrains issues; some
of them have analysis capabilities and tool support. Analy-
sis can consist of checking a set of design constraints or to
allow non-functional requirements to be included as part of
the system design [3]. On the other hand, at the processor
level we can mention at least two different approaches that
focus on validation at the processor level. In the first one,
named Complex [12], the MARTE profile provides capabil-
ities to specify system functionalities and automatic virtual
prototype generation at the processor level, in SystemC, is
done with MDT too. Solution space exploration is done by
comparing VP simulation results with system requirements.
After the best solution is found, an RTL Model, i. e., at
the logic level, is generated (in VHDL). In the second one,
[9], UML is used to build the system level model using the
COMET concurrent object structuring criteria and a VP
based on Colored Petri Nets (CPN) is constructed system-
atically. The CPN can then be simulated and information
from token flow through the CPN used to validate the sys-
tem against requirements.

Our approach allows designers to specify, at the SysML level,
duration constraints of the functionalities of the system.
However we do not provide any type of analysis at this level.
To provide system verification, the high level specification
is transformed automatically, using MDT, to the processor
level, similarly to Complex. However, we differentiate from
the two solutions presented above in that our processor level
model can be used for verification. In our case the formal-
ism used at the processor level is HiLeS-T. Since HiLeS-T is
based on PN, our approach is similar to [9]. Although the
VP in Complex is constructed in SystemC it is important to
note that it is built around formal models of computation
(MoC) which provide improved validation capabilities.

Additionally, if the complete MTC presented in [14] is used,
we can also generate a VP that can be simulated and used
for validation. This prototype, either generated in VHDL-
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AMS or Verilog-AMS, can be simulated to perform valida-
tion. As with Complex, this VP is based on a formal MoC
(TPN). In summary, we specify at the system level, we ver-
ify some properties at the processor level and we validate at
the logic level. An important aspect of our approach is that
all synthesis process (i.e., model transformations to lower
abstraction levels) are automated.

7. CONCLUSIONS AND FUTURE WORK
We have presented an approach to early verification of em-
bedded systems design. We have a model based design pro-
cess that has several steps supported by a model transfor-
mation chain that takes models from high level abstractions,
in SysML, to models in lower levels of abstractions in hard-
ware design languages. As an intermediate step, we use a
formalism based on Timed Petri Nets called HiLeS-T. We
take advantage of this step to extract the behavior infor-
mation from the HiLes model into a Timed Petri Net model
that can be used as an input for model checking verification.
In concrete, we use Tina tools to perform reachability analy-
sis. As we have shown in our example, by doing this step we
can detect and correct early problems in the design of the
systems, avoiding the otherwise not cost effective process of
design, prototyping and test. By automating the process we
reduce the errors associated to manually synthesizing the
models. Further, the Timed Petri Net model can be used in
Petri Net tools that provide advanced time analysis.

Currently we are working on other possibilities to perform
early verification and validation mixing model checking with
simulation techniques. In the short term, we are trying to
use models to track and then to visualize in the highest level
of abstractions (SysML) the problems detected in lower lev-
els, for example in the petri net analysis or in the hardware
simulation to facilitate the corrections.
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A BST R A C T  

In this paper, we put into action an ATL model transformation in 
order to automatically generate SystemC models from AADL 
models. The AADL models represent electronic systems to be  
embedded into FPGAs. Our contribution allows for an early 
analytical estimation of energetic needs and a rapid SystemC 
simulation before implementation. The transformation has been 
tested to simulate an existing video image processing system 
embedded into a Xilinx Virtex5 FPGA. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits, Design A ids]: Simulation  

General T erms 
Design, Languages 

K eywords 
AADL, MDE, Program Synthesis, ATL, SystemC, Simulation, 
FPGA, Functional Validation. 

1. IN T R O DU C T I O N 
Energy. To be able to use the huge quantity of hardware resources 
available inside today  FPGAs, new electronic system level 
(ESL) design methodologies and tools are necessary. Particularly, 
the ever increasing density of transistors, the complexity (number 
of gates) of assembled hardware functions and the apparition of 
new 3D ICs have the consequence that energetic needs are rising, 
and will drastically continue to do so. This is what the IRTS 
revealed when it added  chapter in its annual report 
[1]. Therefore, the energy consumption can prevent systems to run 
for long because of heat dissipation problems or fast battery 
discharge. 

HRMPSoC. Embedded systems are becoming more and more 
complex. They contain computing processors (microprocessors or 
IPcores), memory hierarchies (caches, scratchpads, local and 
external memories ...), communication links (point to point, bus, 
NoC) and rapid IO devices (Ethernet 1Gbit, real time video, 

 

These systems can be dynamically and totally or partially 
reconfigurable on the fly. They are heterogeneous (a mix of 

ability of the application to react 
to environment changes. These systems are called HRMPSoC 
(Heterogeneous and Reconfigurable Multiprocessors Systems on a 
Chip), have a substantial processing power, are self-adaptative 
and are more and more numerous in a mobile and distributed 

. 

These systems have three important qualities: huge number of 
transistors, heterogeneity of implemented functions and time 
variable architectures. Their co-simulation (co because of 
heterogeneity and time variability) at high abstraction levels is 
required and promoted because it is necessary to validate as 
quickly and as soon as possible the functional correctness of 
several candidate architectures. These architectures are built from 
a set of reused or synthesized on demand components. In such 
context, Trabelsi et al. [2] illustrate the fact that functional 
validation and early estimation of energetic needs by simulation 
are key factors in the choice of the best architecture. Moreover, it 
is methodologically efficient to tie both concerns inside a 
common specification environment to write once and then share 
several times the same system models. 

It is proposed to federate analytical energy estimations with 
functional validation of electronic systems into an up-to-date and 
unique modeling environment based on the Eclipse IDE 
(Integrated Development Environment) and the SAE (Society of 
Automotive Engineers) Architecture Analysis and Design 
Language (AADL) [3]. AADL is an emerging standard 
architecture description language for real-time, fault-tolerant, 
scalable and embedded multiprocessor systems. It is component-
centric and allows specifying both software and hardware parts of 
systems. A SystemC model is built by automatically assembling 
components previously grouped in a library in compliance with 
the architecture specified with AADL. Thus, having a unique 
AADL model of an FPGA based system helps designers to check 
two important constraints: 1) that the energetic needs do not 
exceed a given value, and 2) that the assembled system is 
functional.  

This paper presents our work related to automatic generation of 
SystemC models from AADL models. Our automatic generation 
takes advantage of model transformation, which is expressed with 
the ATL language [4]. In section 2 we present the state of the art 
in the domain of automatic generation of models from AADL 
specifications. In section 3 we present our contributions: a 
methodology, a semantic mapping between meta-models elements 
of AADL and SystemC languages and finally a set of ATL 
transformations. We validate our contributions in section 4 with a 
video processing system model. We conclude in section 5.  

2. R E L A T E D W O R K 
AADL enables the development and predictable integration of 
highly evolvable systems as well as analysis of existing systems. 
It supports early and repeated analyses of system architectures 
with respect to performance-critical properties through an 
extendable notation, a tool framework, and precisely defined 
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semantics. In this section we inventory related work about 
analysis and/or generation of executable models, with or without 
the use of MDE techniques, from such AADL models. Most of 
this work concerns the verification of functional and non-
functional system properties or the validation of systems by co-
simulation in order to extract temporal estimations dynamically 
without the need for ISS (Instruction Set Simulators) and RTL 
level models like in complex and long simulations. 
Ocarina [5]: Ocarina is a software tool which allows putting into 
action an evolutionary prototyping methodology based on AADL. 
Worst case execution time and dead-lock freedom are some of the 
non functional properties it can check. It also generates ADA or C 
executables on top of the high integrity POLYORB-HI 
middleware, in turn targeting ERC32 and LEON2 processors. 
Cheddar [6]: Cheddar is an open source tool developed in ADA. 
With the help of simulations, it computes various performances 
criteria (schedulability analysis, time constraints, resources 
allocation, etc.). It accepts as input AADL models thanks to its 
embedded Ocarina API. Given the difficulties to apply 
schedulability theory, the authors have recently decided to exploit 
an MDE methodology to automatically generate, with the help of 
the Platypus tool, some decision support tools that will determine 
the relevant feasibility tests for a given architecture to evaluate. 
Platypus is a meta-model environment relying on the STEP 
standard (ISO 10303, EXPRESS language). 
ACSR [7] and VERSA: The University of Pennsylvania, in 
collaboration with the Freemont Company, has developed a code 
generator that translates an AADL model into an ACSR model 
(Algebra of real-time process). This ACSR model can be analyzed 
with a tool in order to conduct schedulability analysis. 
OSAT E  [8]: OSATE is a set of Eclipse plugins for the modeling 
of embedded electronic systems in AADL. It is based on EMF and 
contains a complete AADL meta-model. OSATE, as an extension 
of Eclipse, is itself an environment for integrating other tools that 
operate on AADL. Version 1.5, used for our work incorporates 
many analysis tools, but no real tools for code generation for 
executable models. 
TAST E  [9]: The TASTE toolset is the result of work of the 
ASSERT (IST 004033, 2004-2007) European project. It was 
developed by ESA (European Space Agency) with a set of 
partners in the aerospace field. It aims to define a development 
process of distributed real-time systems and is based on a tool 
chain which includes Cheddar and Ocarina. TASTE can build a 
system from heterogeneous software (MathLab, Ada, C, C++ ...). 
These codes are either generated automatically by using external 
tools or manually written. The overall system consistency is 
ensured by the use of two modeling languages: system modeling 
with AADL, and messages/data modeling between heterogeneous 
modules with ASN.1. Code generators are used during the 
modeling phases to produce software for a given target. TASTE 
does not generate a mixed executable model for co-simulating 
hardware-software. Neither does it currently include hardware 
features, although it seems to be part of future extensions.  
Gaspard2 [10]. Gaspard2 is a modeling environment for real-time 
systems dedicated to intensive and regular data processing. These 
processes can be represented using a formalism derived from 
ARRAY-OL whose semantics has been adopted in the UML 
MARTE profile. It can generate a SystemC 2.0 TML-level 
simulation model. This model is based on the notion of virtual 
processor and allows representation of both software and 
hardware features. Finally, it incorporates the estimated 
consumption in the SystemC simulation model. However it does 

not accept AADL models as input and does not offer an analytical 
model to estimate the power consumption. 
AADS, SCOPE [11]. AADS is a tool written in Java for the 
hardware/software co-simulation environment named SCOPE. It 
converts an AADL model into a SCOPE model. The SCOPE 
model is compatible with the Ravenscar computation model. 
SCOPE is a co-simulation environment written in SystemC, 
which provides time information on the various system tasks. To 
do this, no instruction sets simulator is used but time is estimated 
by executing an annotated native code. It specifically targets 
MicroC and POSIX OS operating systems and the LEON2 
processor. 
Apart from AADS, none of the work cited above does target both 
SystemC code generation and AADL modeling. One of the two 
languages is always missing. Finally, AADS does not use the 
MDE methodology to convert an AADL model into a SystemC 
model. Our contribution is to implement a model transformation 
in a standardized modeling environment (OSATE) targeting 
another standardized and highly flexible simulation environment 
(SystemC, IEEE 1666-2005). 

3. C O N T RIBU T I O NS 
In this section we present our design methodology, the set of 
AADL/SystemC semantic mappings and the ATL model 
transformations supporting the automated generation process. 

3.1 Methodology 
The methodology that we propose belongs to the category of "fast 
and evolutionary prototyping" [12]. It is based on a combination 
of modeling techniques, code generation and evaluation. It is 
shown in Figure 1 and is divided into six phases: 

 
F igure 1. Model/Generate/Simulate methodology flow . 

1. Use a library of components to model a system with 
AADL/OSATE. This library is enriched by 

 IP designers that provide AADL and SystemC 
models, 

 and sub-systems previously modeled, 
generated and validated. 
 

2. Automatically generate the complete system model in 
SystemC by means of a chain of ATL transformations. 
A simplified meta-model for SystemC has been 
developed including only the necessary concepts needed 
for C++ code generation from SystemC models. 

 
3. Integrate the generated SystemC model in the system 

architect test program. To do this, simply compile the 
code generated from the SystemC models of the 
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assembled components and the test program, then link 
all with the SystemC simulation kernel. 

 
4. Simulate the complete system with the resulting 

executable. The architect judges the validity of the 
system in light of the results based on provided inputs 
and expected outputs. 

 
5. If the system is considered functional, the designer can 

estimate the energy consumption. But, he may as well 
start with the energy estimation and then check the 
functionality second. Energy estimation is performed 
using analysis models whose input often depend on both 
software and hardware parameters. Besides functional 
validation, SystemC simulation can also be used to 
obtain estimates for some of these input parameters. 

 
6. When the system is functional and energy , we 

can then move on to the detailed design phase or repeat 
this method to evaluate a different architecture, or the 
same architecture with another components library. The 
amount of effort needed for the detailed design phase 
depends on the available component libraries. If RTL 
components already exist, they can be reused. 
Otherwise, they must be developed, which may require 
significant efforts. 

The two dashed arrows in Figure 1 indicate that the obtained 
AADL and SystemC models can be respectively added to the 
AADL models libraries and SystemC components library. This 
methodology allows the building of libraries of increasingly 
complex components. 
The components are initially designed to represent a computable 
artifact of the behavior of functions. They do not necessarily 
represent their final implementation. As such, they can represent 
both hardware or software functions. Anyway, there is nothing 
that prevents the existence of several SystemC models of the same 
function. Therefore, they could represent the same function with 
different implementation types or different abstraction levels and, 
as long as their interface with the system remains the same, they 
can coexist in the libraries. 

3.2 A A D L / SystemC Mapping 
AADL permits the modeling of an electronic system in terms of 
software and hardware components 1) which communicate with 
each other and 2) with the placement of interconnected software 
components over the hardware execution platform. The hardware 
is itself made out of a set of connected hardware components 
In the scope of our methodology, the objective is the rapid 
functional validation of a components assembly, each component 
having a functional representation in SystemC. The AADL subset 
we have chosen for this methodology allows the description of 
data types, interface components, system architectures, shared 
data, and communications between components and the external 
interface of the complete system. The link between AADL and 
SystemC entities is defined thanks to annotations added in the 
AADL model. Finally, the model transformation must consider 
the incompatibilities between the rules for naming identifiers. 
Unambiguous AADL to SystemC conversion rules are needed. 
Data types. All types of data processed by components have 
matched AADL and SystemC models. Let CppX be the name of a 
C or C++ data type, and AadlY the name of the corresponding 
AADL data type. Then the AADL data type AadlY has the form 
shown in Figure 2: 

F igure 2. A A D L model of a data type. 

The AADL model is reduced to the creation of an AADL 
component of type data with the name AadlY. The value of the 
property Type_Source_Name is the annotation that indicates the 
semantic mapping between CppX and AadlY. 
Components. Our AADL components are black boxes for which 
only the interface is known. They are represented by AADL 
threads. Their interface consists of communication ports and 
accesses to shared data. 
As shown in Figure 3, the AADL model contains a description of 
a thread and its implementation. Inside its features section, the 
thread contains a list of ports of type event data port when some 
typed data transit and of type event port when it comes to digital 
only signals. It also contains a list of shared variables that it must 
have access to. This is expressed via a requires data access 
clause. The mapping with the SystemC module CppThread, which 
represents the true functionality of the thread, is declared with an 
annotation: we use the value of the property Source_Text in the 
implementation of the thread. Note here the implicit identity 
between the AADL ports and SystemC ports of both models. 
Finally, the notion of shared data is also implicitly synonymous to 
a C++ global variable that is shared by the codes of the 
SC_METHOD or SC_THREAD SystemC processes declared in 
the SC_MODULE. 

F igure 3. A A D L model of a functional component. 

Architecture, Shared Data and Communications. To represent 
the functional architecture of the system, we use an AADL 
component of type process and its associated implementation. We 
declare in the subcomponents clause of the implementation as 
many threads subcomponents as we need as well as all the shared 
data subcomponents that threads need to read/write from. Finally 
we connect the ports. Figure 4 illustrates the architecture of such a 
process inside which N threads of type AadlThread are chained 
together and the ends of the chain are connected to the ports of the 
process. It also creates the shared data d, of type AadlY, and 
indicates that all threads have access to it. 
System Interface. The complete top level system is modeled using 
an AADL system component type. It has the same type of 
interface than the assembled components. The implementation of 
the system declares an instance of the process modeled earlier and 
connects its ports to those of the top level system (Figure 5). 
The identity of the interface of AADL components of type 
process and system allows for repeatedly enriching the libraries 
from the AADL modeling process. During the generation of 
SystemC modules, the same top level system name is created and 
becomes a reusable and valid SC_MODULE. This name will be 
available for future annotations via the Source_Text property. 

data  AadlY  
    properties    Type_Source_Name  =>  "CppX";;  
end  AadlY;;  

thread  AadlThread  
    features  
        id  :  in    event  data  port  AadlY;;  
        od  :  out  event  data  port  AadlY;;  
        i    :  in    event  port;;  
        o    :  out  event  port;;  
        d        :  requires  data  access  AadlY;;  
end  AadlThread;;  
  
thread  implementation  AadlThread.impl    
    properties    Source_Text  =>  "CppThread";;  
end  AadlThread.impl;;  
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Thus, Aadlsyst is a module that can be added to the SystemC 
components library and can be reused for future AADL models. 

F igure 4. A A D L model of the architecture of the system. 

Refinement and Implementation. The AADL concepts of 
refinement (refines) and implementation are both naturally 
represented in the generated SystemC models by the C++ 
mechanism of inheritance. 

F igure 5. A A D L model of the top level interface. 

Transformation Rules for Identifiers. SystemC is a language 
sensitive to uppercase and lowercase while AADL is not. So, 
ABCD and abcd are identical in AADL, but not in C or C++. We 
need to agree on rules for processing AADL identifiers into new 
identifiers that: 

 are legal in C++,  
 are not identical to C, C++ or SystemC reserved 

keywords and macros,  
 and are never duplicated.  

For this, we followed the AADL recommendations about 
the C language [13] and have extended them to the case of 
SystemC and C++. They are listed here. 

 The AADL namespace exists. It contains the names of 
all executable objects that are equivalent to AADL 
concepts. These names are located in a SystemC 

runtime library that contains all types and all classes 
required for the generation of C++ and SystemC 
models. 

 To every AADL package corresponds a C++ 
namespace. As an example, Figure 6 shows an AADL 
package named AadlPack in which all components, data 
types and systems mentioned in this article are defined. 

 All AADL identifiers are converted to lowercase and a 
mechanism for automatic prefixing with "PREFIX_" 
avoids duplications or collisions with keywords of C, 
C++ or SystemC. In addition, all characters "." are 
replaced by "_DOT_", and all sequences "::" are 
replaced by "_PATH_". Figure 7 shows all possible 
translation cases. 

F igure 6. A A D L package. 

F igure 7. Identifier conversion examples. 

3.3 A T L Model T ransformations 
A chain of five model transformations in ATL has been developed 
to generate the SystemC model. In any case, at least two 
transformations were needed for first transforming the AADL 
model into a SystemC model, and then the SystemC model into 
C++ code. Breaking the transformation into smaller pieces 
allowed reducing the complexity of the global transformation.  
These transformations are based on a source AADL meta-model 
and a target meta-model named scMM, which is the C++ subset 
that represents our minimum needs to generate SystemC models. 
It is smaller and easier to manage than a full set of C++ and 
SystemC meta-models syntactically complete. Because we do not 
target all the C++ and SystemC specificities like compilers do, we 
do not require a complete meta-model. Moreover the genericity of 
scMM allows us to retarget to any other object-oriented language. 
Figure 8 shows the scMM meta-model. The C++ concepts are 
namespaces (Namespace), classes (ClassList, Class, ClassSection 
and ClassMember), identifiers and builders of connections 
(ConnectionId, ConstructorConnectionInit, and Binding) and 
finally the identification of the system model (TopLevel). 
The five transformations are (Figure 9): 

 a2s.atl is the essential exogenous transformation that 
converts our AADL subset into its scMM equivalent. 
 

process  SystemArch  
    features  
        id  :  in    event  data  port  AadlY;;  
        od  :  out  event  data  port  AadlY;;  
        i    :  in    event  port;;  
        o    :  out  event  port;;  
end  SystemArch;;  
  
process  implementation  SystemArch.impl  
    subcomponents  
        t1    :  thread  AadlThread.impl;;  
           
        tN    :  thread  AadlThread.impl;;  
        d      :  data  AadlY;;  
    connections  
        c1a  :  event  data  port  id      -­>  t1.id;;  
        c1b  :  event  port            i        -­>  t1.i;;  
        d1    :  data  access          d        -­>  t1.d;;  
           
        cNa  :  event  data  port  t(N-­1).od  -­>  tN.id;;  
        cNb  :  event  port            t(N-­1).o    -­>  tN.i;;  
        dN    :  data  access          d                  -­>  tN.d;;  
        cNc  :  event  data  port  tN.od          -­>  od  ;;  
        cNd  :  event  port            tN.o            -­>  o  ;;  
end  SystemArch.impl;;  

system  AadlSyst  
    features  
        id  :  in    event  data  port  AadlY;;  
        od  :  out  event  data  port  AadlY;;  
        i    :  in    event  port;;  
        o    :  out  event  port;;  
end  AadlSyst;;  
  
system  implementation  AadlSyst.impl  
    subcomponents  
        arch  :  process  SystemArch.impl;;  
    connections            
        c1  :  event  data  port  id            -­>  arch.id;;  
        c2  :  event  data  port  arch.od  -­>  od;;  
        c3  :  event  data  port  i              -­>  arch.i;;  
        c4  :  event  data  port  arch.o    -­>  o;;  
end  AadlSyst.impl;;  

package  AadlPack  
       
    end  AadlY;;  
       
    end  AadlThread;;  
       
       
    end  AadlSyst;;  
       
    end  AadlSyst.impl;;  
end  AadlPack;;  

Idf                            -­>  idf  
IDF                            -­>  idf  
break                        -­>  PREFIX_break  
a.b                            -­>  a_DOT_b  
c_DOT_d                    -­>  c_DOT_d  
c.d                            -­>  PREFIX_c_DOT_d  
a::b                          -­>  a_PATH_b  
c_PATH_d                  -­>  c_PATH_d  
c::d                          -­>  PREFIX_c_PATH_d  
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 updateRefs.atl and updateRef2.atl are two endogenous 
scMM model transformations updating internal 
references that could not be computed in the initial 
processing by a2s.atl. 
 

 orderClasses.atl is the endogenous transformation 
whose role is to sort all classes and types in an order 
consistent with a compilation process. 
 

 sc2txt.atl is the transformation that converts the scMM 
model, with all its internal references properly updated 
and rearranged into a compilable ASCII text. It supports 
the syntax of the C++ object-oriented target language. 

 
F igure 8. scM M meta-model. 

 
F igure 9. A T L model transformation chain. 

4. R ESU L TS 
The presented results have been tested in the following technical 
context: Eclipse 3.6, ATL 3.1.1, AADL/OSATE 1.5, SystemC 
2.2.0 and Eclipse C Development Tools (CDT) 7.0.2. Our 
transformation chain has been integrated in the Eclipse IDE as a 
plugin whose code was partially generated by the ATL 
development toolkit. Users can select the AADL files to be 
transformed, and a directory of a predefined CDT project into 

which the generated C++ files will be put, properly configured for 
SystemC for quick simulation of the system. 
We have modeled an existing image processing system with 
AADL that can process a 25 frames/s VGA video image stream. It 
is embedded into a Xilinx Virtex5 FPGA. Image capture and 
display are performed by hardware blocks respectively interfaced 
with a camcorder and an LCD screen. The image real-time 
processing is performed by a program executed by a synthesizable 
MicroBlaze processor. This system can be easily customized and 
serves many research and project activities. It has been developed 
thanks to the MOPCOM project. 
For didactic purposes (black and white paper print) we have 
chosen to reverse the three color components (RGB) of the 
received images. We have transmitted the image of Lena as a very 
well known test input so that readers feel familiar with the 
presented results. 
Figure 10 and Figure 11 show the graphical and AADL 
architecture of the system. It consists of four components whose 
names are meaningful: capture, processing, display and global 
synchronization. The synchronization block performs the 
permutation of the images accesses indices and schedules the 
image processing at a given frame rate. Capture and display 
blocks operate at the pixel clock. A shared memory stores a buffer 
of three images inside which the blocks can make reads and writes 
through a shared bus. In the AADL model, one can see the 
instantiation of the four components Synchro0, Capture0, 
Display0 and Processing0, the imageArray image buffer, and the 
connections needed to connect the ports and provide access to 
imageArray to all threads. 

 
F igure 10. V ideo processing, system architecture. 

The simulation of this architecture proves that the system is 
functional. The resulting images are depicted in Figure 12. While 
the real system is a real-time one running at a rate of 25 frames / 
sec, the SystemC model is simulated at a rate of only one image 
every four to five seconds. So we have a ratio of about 100 
between the simulation speed and the real time processing rate 
expressed in images per seconds. 

5. C O N C L USI O N A ND PE RSPE C T I V ES 
In this article we presented our work about the transformation of 
AADL models into SystemC for electronic systems embedded 
into FPGAs. Our contributions, which have been validated by the 
modeling of a real time image processing system, the code 
generation and the SystemC simulation (consistent with the 
expected behavior), show that it is possible and efficient to 
combine in the same Eclipse meta-modeling environment the 
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analytical estimation of power consumption and the functional 
validation by simulation. By reusing the same models, the two 
methodologies reduce the modeling efforts imposed to the system 
architect. Finally, this rapid generation and simulation design 
process allows considering a broader exploration of the 
architectural design space. 

 
F igure 11. A A D L model of the system internal architecture. 

          Input Lena            Output Lena 

 
F igure 12. Simulated processed images. 

During this work, we have identified that the use of incomplete 
AADL specifications (keyword refines) enables a generic 
modeling and a late binding mechanism during the modeling 
process. This mechanism seems very close to the C++ template 
concept. We intend to study it and integrate it in the ATL 
transformations. With this modeling feature, it will be possible to 
model generic architectures and refine them only when needed. 
Hence, functional components AND generic architectural 
components will be both available in our AADL and SystemC 
libraries. 
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ABSTRACT

Model-based Safety Analysis (MBSA) techniques exist that
ensure an increased consistency by formalising the safety
analysis and allow automation of the safety calculations.
With the increased acceptance of Model-based Systems En-
gineering (MBSE) as the new systems engineering paradigm,
it seems natural to combine MBSE and MBSA.. This work
provides a methodology and tool support for an integrated
MBSE and MBSA on one common model based on SysML[6]
which allows the systems engineers to perform an automated
safety analysis to receive quick feedback on their design de-
cisions during the system design phase.
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1. INTRODUCTION

Increasing system complexity results in an increase in com-
plexity of the safety analyst’s task to ensure that systems
are safe. Model-based Safety Analysis methods have been
developed for formalising the work and subsequent automa-
tion of the safety calculations. However, these techniques
use their own models that are not identical to the design
models. Keeping consistency between these models either
requires manual effort or model-to-model transformations.
Additonally, the system design is often separated from the
safety analysis process, the connection often being an ”over
the wall process”[5], and the system designers receive the
safety analysis results late in their work which makes neces-
sary changes more expensive.

Given that Model-based Systems Engineering 1 is increas-
ingly accepted and employed in industry as the new systems

1The International Council on Systems Engineering defines
MBSE as ”the formalised application of modelling to support
system requirements, design, analysis, verification and val-
idation activities beginning in the conceptual design phase
and continuing throughout development and later life cycle
phases”[7].

engineering paradigm, it seems natural to combine MBSE
and MBSA. The key idea of this work is to extend the
SysML[6] MBSE design model to include safety related as-
pects. This will allow the systems engineers to perform an
automated safety analysis to get feedback on their design
decisions without the need for a safety specialist.

Paper structure: Section 2 provides background information
regarding system safety. Section 3 defines the rules for safety
calculations used in this work and section 4 introduces the
concept of model-based safety analysis and provides exam-
pels for existing implementations. Section 5 describes our
concept for an automated safety analysis based on SysML
models. The process and the modelling extensions will be
illustrated by a running example. Section 6 provides a con-
clusion to this paper.

2. SYSTEM SAFETY

System safety uses systems theory and systems engineering
approaches to prevent foreseeable accidents and to minimize
the result of unforeseen ones. It is a planned, disciplined,
and systematic approach to identifying, analyzing, and con-
trolling hazards throughout the life cycle of a system in order
to prevent or reduce accidents [14].

2.1 Safety Terminology

Unfortunately, safety and reliability are sometimes used in-
terchangeably. Risk is ”[a] combination of the likelihood of
harm and the severity of that harm” [16]. Safety is defined
as ”freedom from unacceptable risk” [17] and reliability is
defined as ”the probability that a piece of equipment or com-
ponent will perform its intended function satisfactorily for
a prescribed time and under stipulated environmental con-
ditions” [14]. So, whereas reliability deals with all potential
failures, safety only deals with the hazardous ones [13].

Generally, safety has a wider scope than failures, and fail-
ures do not necessarily compromise safety. Many accidents
occur even when the individual components were operat-
ing exactly as specified or intended, that is, without failure.
The opposite is also true - components may fail without a
resulting accident.

2.2 Safety engineering process

Existing safety engineering processes are normally based on
standards that define a common framework for the deriva-
tion of safety requirements which combines hazard assess-
ment and risk analysis techniques. The aim of the analysis
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is to determine:

• The critical system functions, i.e. functions which may
cause a hazard when lost or malfunctioning

• The safety requirements for these functions, i.e. the
maximum allowed failure probabilities.

• The demands, if any, for additional safety functions in
order to achieve acceptable levels of risk for the system.

Figure 1 depicts the steps in the development of an aircraft
system and the related safety assessment procedures. It is
based on the two main standards relating to safety in the
civil aerospace2 domain: ARP-4754[10] and ARP-4761[11].

Figure 1: Safety assessment process in relation to
the systems development process

2.3 Classical Safety Analysis Methods

Various causally based techniques for systems safety assess-
ment based in known designs have evolved. Usually, these
fall into two classes - methods which work from known causes
to unknown effects (such as Failure Modes and Effects Anal-
ysis) [19] or those which work from known effects back to
initially unknown causes (such as Fault Tree Analysis) [19].

The target usage of these techniques varies depending on the
domain and the nature of the problem. For example, fault
trees are commonly used in the civil aerospace domain at
the Preliminary System Safety Assessment (PSSA) phase to
examine whether the system can achieve the safety require-
ments allocated from the hazard identification [13].

While there exist tools supporting these classical safety anal-
ysis methods, most of the work is still done manually.

3. SAFETY CALCULATIONS

This section explains the rules for safety calculations. The
probability of a failure event ”component c failing”is denoted
as Pc. The inverse event ”component c is functional” then
is 1 - Pc denoted as Qc. For the derivation of the failure
formulas it is assumed that all failure events are independent

2The methodology was developed and is therefore embedded
in an aeronautic context but generally is independent of a
specific domain

of each other. Let there be two components c1 and c2 with
their respective probabilities Pc1, Qc1 and Pc2, Qc2. Then,
the probability of both events occurring is Pc1 * Pc2 [15].

The probability that one of both components fails is P(A|B)
= P(A) + P(B) - P(A\B). This can be further reduced un-
der the assumption that the failure probabilities of compo-
nents are typically of the order 10-3 or smaller. From this
follows that the term P(A\B) is very close to zero and can
be omitted without significantly loosing accuracy. Hence,
the probability of c1 or c2 occurring is Pc1 + Pc2 [15].

Failure expressions can be simplified with the help of the
idempotence law and the absorption law. For instance, let
there be three components c1, c2, c3 and three failure events
A, B, C with A = ”c1 fails”, B = ”c2 fails” and C = ”c3
fails”. Assume the following failure expression (using + and
* for the set operations) A + ((A + B) | (A + C)). Using
the rules of boolean algebra, this expression is equivalent
to the term A + AA + AC + AB + BC. Applying the
idempotence law yields the term A + AC + AB + BC which
finally can be simplified to A + BC with the help of the
absorption law. Expressing this algebraic term in terms of
component failures this means, that component c1 fails, or
the components c2 and c3 fail together.

3.1 Reliability Block Diagrams

Reliability Block Diagrams (RBD) allow visually represent-
ing the success logic of a system by using block structures
that are connected with each other via success paths. A suc-
cess path is a ”set of components which, when working, con-
nect the start node with the end node [of a system] through
working components thereby guaranteeing that the system
is in working state” [20]. A minimal path is a path ”from
which no component can be removed without disconnect-
ing the link it creates between the start and the end node”
[20]. It holds that the elements required for the system are
connected in series, while elements that can fail without af-
fecting the system to work are connected in parallel [2].

3.2 Minimal Cut Sets

With the help of analytical methods RBDs can be evalu-
ated to calculate the system reliability [21]. But, since an
RBD can contain each component more than once, the fail-
ure probabilities cannot be determined by summing up the
probabilities within a channel and multiplying the channel
probabilities. Instead, a so called minimal cut set of the
RBD has to be found that contains each element only once.
A cut set is a ”set of components which, when failed, dis-
connect the start node from the end node and the system
is in a failed state”[20]. A minimal cut set is a ”cut set
for which no component can be returned in working state
without creating a path between the start node and the end
node, thereby returning the system into a working state”[20].
Using the safety calculation rules introduced in section 3 it
is possible to calculate the failure probability of the system,
even if there are multiple occurrences of a component in
several success paths.

3.3 Failure modes

Failure modes describe how components can fail[12]. They
are commonly divided into content failures, which means
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that the components delivers data in a way that deviates
from the assigned functionality, and timing failures which
means that the component sends its data at the wrong point
in time. This can either be too early, including sending data
when none is required, or too late.

In the context of this work, content failures are referred to as
loss failures because the loss of a functionality in a broader
sense can also be seen as an ”deviation from the assigned
functionality”. Timing failures, on the other hand, are re-
ferred to as spurious failures3.

Depending on the failure mode, the calculation of a fail-
ure case differs. When calculating the probability of a loss
failure for a function, the function’s dependencies are con-
sidered. Calculating the probability of a spurious failure for
a function, however, does not consider the functional depen-
dencies of that function, but the functions that are depen-
dent of it because the effect of an inadvertently sent signal
on these functions has to be determined.

4. MODEL-BASED SAFETY ANALYSIS

4.1 Existing solutions

To automate safety activities and also to extend and com-
plement the classical safety analysis techniques, a variety of
formal safety analysis techniques exists. One of the most
prominent examples is the AltaRica [1] language. AltaR-
ica models formally specify the behaviour of systems when
faults occur. These models can be assessed by means of com-
plementary tools, e.g. to calculate overall failure rates and
derive fault tree diagrams automatically. The safety model
of a system in AltaRica is not identical to the design model
of that system in e.g. SysML. Keeping consistency between
these models either requires manual effort or model-to-model
transformations. Additionally, these models are built typ-
ically after the system design and thus necessary changes
that result from the safety analysis are costly to put into
effect.

4.2 Integrating MBSE and MBSA

With the increased acceptance of MBSE as the new systems
engineering paradigm, it seems natural to combine MBSE
and MBSA. One possibility is to automatically extract min-
imal cut sets directly from detailed design models bypassing
Fault Tree generation altogether. This approach [3] allows
truly automated analysis of detailed design models thus min-
imising both the possibility of safety analysis errors and the
cost of the analysis. The application scope of the approach is
the detailed design phase of a system and it requires detailed
component models to work.

Another possibility is to derive models suitable for safety
analysis from the system development models. In [4] pro-
vides an example for deducing analyzable AltaRica code
from UML/SysMLmodels. This approach requires the avail-
ability of detailed AltaRica node implementations for all in-
volved system components.

In contrast to these described existing methodologies, which
represent a number of further research work that has a sim-
ilar direction, e.g.[8], our approach is explicitly light-weight
3Powell [18] uses the terms value and timing errors.

and targets system design in its early phases. The idea is
that the system designer can run an approximated safety
analysis during the design process without the necessary aid
of a safety specialist to get very quick feedback on design
decisions.

5. AUTOMATIC SAFETY ANALYSIS

For our approach, we extend the already existing meta model
[9] for functional and systems architecture modeling with
concepts from the safety domain as depicted by Figure 2.
Textual safety requirements are formalized as failure cases
with attributes that define the maximum allowed probabil-
ity for a failure case to occur. The failure case in turn is
defined by its relation to one or more functions which have
to fail in order for the failure case to occur. Note, that
the function(s) that the failure case is related to serve as a
starting point for recursively propagating that failure in the
functional architecture. The basic assumption here is that a
function fails when one or more of the functions that it needs
input from fail. Additional modifications on the relation be-
tween the failure case and the function, e.g. the definition
of the failure mode, allow modifying how this propagation
is done, e.g. propagation without restrictions, propagation
up to a certain depth or no propagation at all.

Figure 2: Safety meta model

5.1 Running example

The envisaged automated safety analyis process and the
modelling notations used will be demonstrated using a run-
ning exanpmle. The Fire Detection System (FDS) is a sim-
ple system for the detection and (visual) warning in case
of fire. It consists of a busbar, a fire warning lamp, and a
number of fuses and fire detectors.

5.2 Modelling process

The envisaged safety analysis process is depicted by 3. It
illustrates how the traditional safety and engineering process
steps and their connections (see Figure 1) are extended to
include the automatic system safety analysis process step.
Note, that this belongs to the system development process,
i.e. it can be performed by the systems engineers in their
daily work without the involvement of a safety analyst or a
dedicated safety analysis tool. This enables instant feedback
on design decisions.

5.3 Modelling notation

This subsection describes the modelling formalisms that are
used to model the system and the safety related extensions
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Figure 3: MBSA Process

such as failure cases. The functional architecture is real-
ized using SysML Activity Diagrams. Functions are rep-
resented by Actions and functional dependencies as Data
Flows and/or Control Flows.

Figure 4: FDS functions

System components, modeled as blocks, are extended by
an additional stereotype «safety relevant», which allows the
annotation of the blocks with characteristics that are needed
in the context of safety analysis such as the failure rates for
the different failure modes.

Actions, representing functions, are allocated to the classes
via an «allocate»dependency. Figure 4 shows on the left
side the three identified functions of the FDS, their sequence
and the data flows between them and the allocation of the
functions to system components on the right side.

Failure cases are defined by use cases marked by the stereo-
type «Failure Case». The formal semantics of a failure case
is defined by dependency associations that relate functions
to failure cases. These dependency associations must be
assigned a stereotype corresponding to a failure type: for
loss failures this stereotype is «loss», for spurious failures
«spurious». The dependencies can be shown graphically on
SysML Use Case Diagrams as demonstrated by Figures 5

and 6.

Figure 5: FDS failure case 1 - before and after ex-
pansion

Figure 6: FDS failure case 2

Additionally, each failure case has a defined maximum al-
lowed failure rate, which defines what rate of failure is ac-
ceptable in a system for the given failure case. For the FDS
the maximum rates are 2x10-5 for No alarm when required
and 1x10-5 for Alarm when not required for one hour oper-
ating time.

The internal architecture of the system under development
is defined by SysML Internal Block Diagrams. For our ex-
ample we have two alternatives for the FDS architecture as
shown by Figures 7 and 8.

Figure 7: FDS System 1

Each of the components used in the implemenation of the
FDS has a defined failure rate. The values used for the
example calculation are given by Table 1.

5.4 Implementation and results

The concept was implemented using IBM Rational Rhap-
sody for creating the SysML models and a Java program,
henceforth called SafetyAnalyzer. The SafetyAnalyzer uses
the Rhapsody API to Rhapsody retrieve the models. Using
the stereotypes defined in the system model the elements can
converted into corresponding internal data types. The core
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Figure 8: FDS System 2

Component Failure rate
Busbar 4x10-6/h
Detector failed 5x10-5/h
Detector spurious 2x10-5/h
Fuse 1x10-6/h
Warning lamp 5x10-6/h

Table 1: Failure rates for FDS components

functionality uses this internal data model which is indepen-
dent of the model implementation and therefore is restricted
neither to the use of SysML nor to a particular tool such as
Rhapsody.

The internal data model essentially consists of graphs: one
for the functional architecture and one for each of the sys-
tem implementations. Simply put, the safety calculations
involve traversing the graph of the functional architecture
while at the same time following the graph of the system ar-
chitecture and gathering a set of visited component nodes.
Then, the minimal cut set can be derived from this set of vis-
ited component nodes by applying the principles described
in chapter 3. Given the minimal cut set, the failure rates
of the components can be directly used to calculate a final
number for the probability of the failure case to happen.

The SafetyAnalyzer provides as output:

• The minimal cut set for each failure case and system
alternative.

• A reliability block diagram representing this minimal

cut set graphically.

• A safety verdict that shows for each failure case and
system alternative if this system alternative is able to
stay within the bounds for the maximum allowed fail-
ure rate.

• An overall safety verdict that states if a system alter-
native is able to adhere to the restrictions by all defined
failure cases.

For the FDS, for 1 hour of operation the results given by the
automatic safety analysis are as follows:

• FDS 1

– Loss of detection: Busbar + (Fuse 1 + Detector
1 failed) * (Fuse 2 + Detector 2 failed) + Lamp
= 9x10-6. Verdict: Pass

– False indication: Detector 1 spurious + Detector
2 spurious = 4x10-5. Verdict: Fail

– Overall verdict: Fail

• FDS 2

– Loss of detection: Busbar + Fuse 1 + Detector
1 failed + Fuse 2 + Detector 2 failed + Lamp =
1,11x10-5. Verdict: Pass

– False indication: Detector 1 spurious * Detector
2 spurious = 4x10-25. Verdict: Pass

– Overall verdict: Pass

Additionally our implementation provides the RBDs for each
system implementation and failure case as a .gml4 file. The
RBDs produced for the FDS visualized using yEd5 are shown
by Figures 9 and 10.

Figure 9: RBDs for FDS1

4Graphlet GML graph data format used for the storage and
exchange of graphs. GML is an acronym derived from Graph
Modelling Language.
5http://www.yworks.com/en/products_yed_about.html
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Figure 10: RBDs for FDS2

6. CONCLUSIONS

The MBSA process developed in this work was motivated
by the idea of an automated, light-weight, function-oriented
and statical safety analysis of architectures modeled in SysML
in a single tool. In doing so, this MBSA process has a differ-
ent intention than other existent safety analysis approaches
which mostly work with a safety model of a system which
is not identical to the design model of that system. From
that it follows, that model-to-model transformations have
to be applied between the systems engineering domain and
the safety domain. The avoidance of this error-prone and
time-intensive transformation of system models is the main
benefit of this approach. For this, SysML was extended to
include safety-related information. Since these extensions
are realized by stereotypes, applying it to existing SysML
system models requires almost no additional modeling ef-
fort. In doing so, the system designer can execute safety
analyses on system designs without the help of safety engi-
neers and thus gets a fast safety-related feedback of design
decisions. However, this MBSA approach does not claim to
be a substitute for a certification relevant safety analysis.
For that purpose, complex safety analysis techniques have
to be used which cover also dynamic aspects of the system.
Nevertheless, the approach introduced in this work can be
seen as a support for designing structurally safe systems on
the basis of functional safety requirements.
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ABSTRACT 
One key point of Real-Time Embedded Systems development is 
to ensure that functional and non-functional properties (NFPs) are 
satisfied by the implementation. For early detection of errors, the 
verification of NFPs is realized at the design level. Then the 
design model is implemented on a Real-Time Operating System 
(RTOS). However, the design model could be not implementable 
on the target RTOS. In this paper, we propose to integrate 
between the design and the implementation phases, a feasibility 
tests step to verify whether the design model is implementable on 
the target RTOS and a mapping step to generate the appropriate 
RTOS-specific model. This two-steps approach is based on an 
explicit description of the platform used for verification and the 
RTOS which is the implementation platform. Moreover an 
additional verification step is needed to ensure the conformity of 
the implementation model to the design model with regard to 
NFPs.   

Keywords 
MDD, Design Model, RTOS-specific Model, Real-Time 
Validation;  

1. INTRODUCTION 
In order to overcome the increasing complexity of Real-Time 
Embedded Systems (RTES), Model-Driven-Development (MDD) 
[1] promotes a rise in level of abstraction by introducing 
intermediate models from specification to implementation, while 
passing through design, and enabling validation at each level.  

At the design level, scheduling analysis [2] may be applied to 
validate design choices in terms of timing requirements. Several 
tools are available to carry out such validation, one can cite as 
example Qompass-Architect [3], Cheddar [4], and MAST [5]. 
However, to achieve that, each of these tools considers some 
implementation assumptions (e.g. scheduling policy, 
communication mechanisms) which are related to a validation 
platform.  On the other hand, there is an important number of 
Real-Time-Operating-System (RTOS) in the market. Some are 
compliant to a specific standard such as POSIX [6], OSEK-VDX 
[7] and ITRON [8], some are commercial and others are free and 
may be not compliant to any standard. These RTOS or standards 
share common concepts but with specific features [9]. The choice 
of the target RTOS depends on the considered community and the 
intended use [10].  

From these considerations, the refinement of the design model, 
making some implementation assumptions to be validated, to an 
RTOS-specific model is error-prone. In fact, the selected RTOS 
may be too restrictive with regard to the validation platform or 
incoherent correspondence between properties of the validation 

platform resources and the RTOS ones may occur. In that case, 
the designer iterates on the design model, modifying and re-
validating it, looking for an implementable solution. These 
modifications are usually based on the designer experience and 
reduce portability of design model: the design model becomes 
specific to an RTOS. 

Several works are interested in the deployment of an application 
on a real platform. In [11], the authors propose a generative 
process to transform an application deployed on one RTOS to 
another based on an explicit description of the latter using the 
Software Resource Modeling (SRM) UML profile, which is part 
of the UML profile for MARTE [12] . This work makes the 
assumption that the deployment is always possible and did not 
paid any attention to the incoherence between the characteristics 
of the different platform resources and its influence on the validity 
of the obtained model. The author in [13] proposes a deployment 
process of an application on a RTOS. This process considers also 
an explicit description of the latter but using a Domain Specific 
Language (DSL) called RTEPML and focuses on defining generic 
transformations to automate the process. Compared to [11], this 
approach claims the necessity to verify the availability of a 
concept on the target RTOS before the deployment.  

In previous work [14], we proposed a two-steps approach that 
ensures the generation of valid implementation model from design 
model fulfilling timing properties. This approach is based on an 
explicit description of the validation platform and the target 
RTOS using SRM [12]. The first step, which is a set of feasibility 
tests,  aims at verifying whether the implementation assumptions 
made at the design level are implementable on the target RTOS. 
The second one is a mapping step that performs the mapping 
between the validation platform resources and the RTOS 
resources to obtain a RTOS–specific model. In [14], we have 
focused on concurrency aspects, scheduling policies, tasks and we 
have especially treated the tasks’ priority problem. In this paper, 
we extend the proposed approach by treating the shared resources 
aspect. Thus, we consider that tasks in the design model may be 
dependent by sharing resources and we describe the required 
resources in the validation and RTOS platforms. We discuss also 
the additional feasibility tests and mapping necessary from this 
perspective. On the other hand, one important issue is to verify 
whether the generated RTOS-specific model is valid with respect 
to the design model. So, in this paper, we focus also on 
identifying the required verification to confirm the correctness of 
such model.   

The paper is organized as follows. Section 2 presents the 
assumptions of the paper.  In section 3, we give an overview of 
the two-steps approach to generate valid implementation models 
and we add the necessary treatments for the shared resources 
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aspect.  In section 4, we explain how to verify the validity of the 
RTOS-specific model with respect to the design model.  Section 5 
illustrates on an example the approach and the verification phase. 
Finally, section 6 concludes the paper.  

2. ASSUMPTIONS 
We assume that timing validation is performed at the design level 
using Optimum methodology [3] supported by the Qompass-
Architect tool. This methodology introduces timing validation 
from the specification level in order to guide the design of the 
concurrency model that satisfies the timing constraints.   
In this paper, we assume that the design model, generated by 
Optimum consists of a set of tasks  ,,…}  
executingthe different functions of the system. All tasks in the 
model are scheduled according to their priority. So each task is 
characterized by its priority and runs at a base period .  
Besides, we assume that two tasks in the model may be dependent 
by sharing resources. Consequently, the design model consists 
also of a set of resources  ,,…,} such as each     
is shared between two tasks or more. 
Finally, we suppose that the hardware architecture corresponds to 
a single execution node (mono-processor architecture). 
From this correct model (design model), one objective of this 
work is to ensure a correct transition to the implementation model 
while respecting the timing properties. More precisely, we focus 
on platform aspect because validation is based on a validation 
platform, here the platform used by Qompass-Architect, while 
implementation is based on the RTOS.    

3. MODEL-DRIVEN APPROACH  
In this section we give an overview of the two-steps model-driven 
approach which has been explained in details in previous work 
[14]. Then, we extend this approach by considering shared 
resources aspect.  

3.1 Overview  
One key point of our approach is to ensure a correct deployment 
of a design model satisfying non–functional requirements on an 
RTOS. The obtained RTOS-specific model (implementation 
model) must conserve the properties that have been validated at 
the design level. 
The design model translates the system specification and fulfills 
its timing constraints under the assumptions made by the 
validation platform related to the validation tool (c.f. Figure 1). In 
our case, the validation platform is the Optimum platform as we 
assume that timing validation is performed at the design level 
using Qompass-Architect [3]. In fact, the validation platform 
includes all concepts provided by RTOSs and that are necessary to 
perform timing validation. This makes this platform independent 
from a particular RTOS and provides a flexible framework to the 
designer to make different design choices.  
In our approach, we choose an explicit description of the 
validation platform and the RTOS using SRM. Indeed, SRM 
allows capturing the semantics of the different concepts defined in 
both platform models and serves as a pivot language to automate 
the refinement of the design model to an implementation model. 
As shown in Figure 1, the approach introduces two steps between 
the design and the implementation levels: 

• Feasibility tests step: this step generates an error when 
the design model is not implementable on the target 
RTOS and provides a feedbacks to the designer to 
inform him about the source of the problem.  It 
generates a warning when the design model is 
implementable but the RTOS provides an 

implementation that is probably more optimized than 
the one chosen at the design level. Otherwise, this step 
mentions that there is no problem and that the mapping 
step can be performed.  

 
 

Figure 1.Model-Driven approach  
• Mapping step: this step generates the RTOS-specific 

model by performing the mapping of concepts and the 
mapping of properties of these concepts. This mapping 
is based on the notion of matching between the 
resources of the validation platform and the RTOS one.    
This matching is ensured, in our case, by the use of 
SRM to describe both platforms (c.f. Figure 2).   
 

 
Figure 2.Matching using SRM  

In [14], we were interested in concurrency aspects such as 
scheduling policies, tasks and their properties that describe the 
application behavior in a design model with independent tasks. 
The greater emphasis was on the priority problem. Briefly, we 
describe the tests invoked by the feasibility tests step which are 
related to the priority aspect.  

• Test of scheduler: this test verifies the scheduling 
policies adequacy between the validation platform and 
the RTOS.  For instance, if the scheduling policy used at 
the design level is priority-based and the RTOS does not 
offers a priority-based policy. So in that case, this test 
generates an error to mention that the input design 
model is not implementable on the target RTOS  

• Test of number of priority levels: this test computes the 
number of priority levels used in the design model and 
verifies whether the platform supports that number. If 
the number of priority levels allowed by the RTOS is 
lower than the number used at the design level, this test 
generates an error to indicate that the design model is 
not implementable on the target RTOS.   

• Test of equal priority levels: this test verifies if, at the 
design level, there are tasks that share the same priority 
levels. In that case, if the target RTOS does not support 
such situation, this test generates an error to inform the 
designer that his design model is not implementable. 
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In order to generate the RTOS-specific model, the mapping step 
provides also different mapping strategies of the priority values to 
give a flexible framework to the designer. We give also a brief 
description of these mapping strategies: 

• Direct mapping keeps at the implementation the same 
priority values used in the design model. This type of 
mapping does not ensure always valid implementation 
models. 

• Linear mapping generates consecutive values from the 
available minimum priority level of the used RTOS. If 
feasible, it ensures always valid implementation models. 
However, the generated priority is less convenient to 
insert new task at run-time. 

• Mapping by step is similar to the previous one, but 
adding a step between two consecutive levels of 
priority. The validity of the obtained implementation 
model depends on the step size. Like for direct 
mapping, it is necessary to add a supplementary test to 
verify whether this mapping is possible. 

• Proportional mapping distributes applicative priority 
values over the maximal range offered by the RTOS. It 
guarantees valid implementation models. Nevertheless, 
this type of mapping is not possible if the RTOS does 
not provide an upper bound of priority levels. 

3.2 Consideration of shared resources  
We suppose that tasks in the design model may be dependent by 
sharing resources (c.f. section 2). The sharing of a data resource, 
when the use of the data must be atomic, necessitates choosing 
three architectural parameters: the synchronization protocol, the 
allocation policy and the access protocol.  The synchronization 
primitive (e.g. Semaphore, Mutex) is needed to ensure that one 
and only one task can use the resource at a time. The allocation 
policy or the waiting queue policy (e.g. FIFO, priority-based) 
determines what happens when a request is made for the resource 
when the resource is busy. Finally, the access protocol (e.g. PCP, 
PIP) is used to avoid priority inversion situations or deadlock by 
modifying the priority of the task during the execution. The 
combined choice of synchronization protocol, allocation policy 
and access protocol corresponds to a possible implementation of 
the shared resource (critical section). In next subsections, 
validation and RTOS platform models are enriched to support the 
creation of design and implementation models with shared 
resources. Then, we discuss the feasibility test and mapping steps 
from this perspective.  

3.2.1 Validation platform model for Optimum  
In order to perform timing validation, the designer has to make 
implementation assumptions on how to implement the critical 
section. As already discussed in section 3.1, the validation 
platform is an “ideal” platform that offers unlimited design 
choices for the designer and is independent from a particular 
RTOS. Consequently, this platform covers all the ways for 
implementing a shared resource. To this end, we add a 
Shared_Resource concept to the Optimum platform (c.f. Figure 3) 
and we annotate the latter with “swMutualExclusionResource” 
stereotype from SRM. The choice related on how to implement 
this shared resource corresponds to setting the values of the 
mechanism, waitingQueuePolicy and concurrentAccessProtocol 
properties of the “swMutualExclusionResource” stereotype which 
correspond respectively to the synchronization protocol, 
allocation policy and access protocol parameters already 
mentioned. In Figure 3, we choose a default implementation of the 

shared resource (PCP_Semaphore). However, the designer can 
change this implementation by modifying the values of these 
properties. Depending on the designer choices, the validation tool 
involves the corresponding analysis test. 

 
Figure 3.Excerpt of the Optimum platform model  

Some combined choices of these three parameters do not 
correspond to real implementations. An example of non-
meaningful implementation is; we choose a semaphore 
mechanism with a FIFO waiting queue and a PCP protocol. In 
order to avoid such situation, we propose to add an OCL 
constraint [15] for each non-meaningful implementation. The 
current implementation of SRM imposes to express these choices 
at the profile level (i.e. set the properties values of the 
“swMutualExclusionResource” stereotype). Consequently, the 
OCL constraints that prevent insignificant implementations of the 
critical section are also defined at the profile level. For instance, 
the previous unsound situation corresponds to a constraint 
associated to “swMutualExclusionResource” stereotype from 
SRM and is given just below:  
 
 

 

3.2.2 RTOS Model  
To tackle the issue of shared resources, the RTOS model should 
describe the possible implementations of critical section provided 
by the considered RTOS. We choose, in this paper, RTEMS [16] 
as a target RTOS and we give in Figure 4 an excerpt (a view for 
the shared resources) of the RTEMS platform model.  

 
Figure 4.Excerpt of the RTEMS model 

RTEMS provides three possible implementations of a shared 
resource. Each of these implementations corresponds to a class in 
the RTEMS model annotated “swMutualExclusionResource”. For 
each class, we give default values to the mechanism, 
waitingQueuePolicy and concurrentAccessProtocol properties of 
the “swMutualExclusionResource” stereotype which define the 
considered implementation. For example, The 
FIFO_Semaphore_Resource concept corresponds to a shared 
resource implementation using a Boolean semaphore as a 

context swMutualExclusionResource  
inv:  
(Self.mechanism = BooleanSemaphore) and 
(Self.waitingQueuePolicy = FIFO) implies (not 
(Self.concurrentAccessProtocol = PCP)  
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synchronization protocol and FIFO as an allocation policy. This 
implementation should not define an access protocol this is why it 
does not appear in Figure 4.   

3.2.3 Feasibility tests and mapping steps 
The extension of our approach to support tasks dependencies by 
sharing resources requires additional feasibility test to verify 
whether the target RTOS provides the critical section 
implementation chosen at the design level. If it is not the case, the 
feasibility tests step generates an error to inform the designer that 
the corresponding design model is not implementable on this 
RTOS.  
In some cases, the implementation choices made by the designer 
to implement the critical section are implementable; however the 
RTOS provides another implementation that offers better real-
time performance. In that case, the feasibility tests step generates 
a warning in order to propose to the designer to change the 
implementation. An example of such situation is; when the 
designer chooses a FIFO semaphore at the design level and the 
target RTOS provides a PIP semaphore. So the feasibility tests 
step highlights a warning to inform the designer that the target 
RTOS provides a PIP semaphore which is more adapted for real-
time application [17]. The designer at this point can choose to 
keep his design model and to perform the mapping or to modify 
the implementation choices for the critical section taking into 
consideration the generated warning.  
The mapping step for the shared resources is straightforward. If 
the design model is implementable, this step creates an instance at 
the implementation level of the resource that defines the same 
critical section implementation choices made at the design level.  

4.RTOS-SPECIFIC MODELVERIFICATION  
One key point of the proposed approach is to generate correct 
RTOS-specific models from valid real-time design models. In 
order to confirm that the obtained model is correct (i.e. preserves 
design model timing properties); some properties must be verified 
at the implementation level. In our case, we identify three 
properties:   

• P1: the priority values of the different tasks must be 
always within the range of priority values allowed by 
the RTOS  

• P2: the execution order of the different tasks defined at 
the design level must be preserved at the 
implementation level.  

• P3: the access order to shared resources must be 
preserved 

To address the first property (P1), we propose to add an OCL 
constraint to the RTOS model. The role of this constraint is to 
verify that the priority values of the different tasks in RTOS-
specific model are meaningful to the considered RTOS. As an 
example, we give just below the constraint that we add to the 
RTEMS model and which corresponds to (P1):  
 
 
 
 
 
 
 

Depending on the priority order (increasing or decreasing) which 
is determined by the minPriorityLevel and maxPriorityLevel 
attributes of the RTEMS_Task (c.f. Figure 4), this constraint 
verifies whether the priority values of the different tasks instances 
of the RTEMS-task are between the minimum and the maximum 
priority levels (given by minPriorityLevel and maxPriorityLevel 
and correspond respectively to 255 and 1 in RTEMS).  
For the second property (P2), we don’t focus on the priority 
values (which is already verified by the first property) but on the 
execution order of the different tasks which must be equivalent at 
the design and implementation level. In order to verify this 
property, we propose the meta-model given in Figure 4.  

 
Figure 4.Verfication-oriented meta-model  

This meta-model considers an application as a relation of 
precedence among priority levels. As we may have tasks that 
share same priority level, we consider in the meta-model that at 
each priority level one or more tasks may also have a relation of 
precedence. So this meta-model considers that the most important 
is not the values of priority but the relation of precedence between 
them. In order to verify the second property, we transform the 
design and the RTOS-specific models to models that conform to 
this meta-model and we verify if they are equivalent.  
The access order to the shared resource in the model is preserved 
at the implementation level, if and only if, the execution order of 
tasks that share this resource is also preserved. Consequently, the 
third property (P3) is verified, if and only if, the second property 
(P2) is verified.  
As a conclusion, the generated RTOS-specific model is correct 
with respect to the design model, if and only if, these three 
properties (P1), (P2) and (P3) are verified.   

5. CASE STUDY 
In this section we illustrate our approach with the example 
presented in [3]. This example corresponds to a classical 
case study in the automotive domain, i.e. the antilock 
control sub system. 

Figure5. System functional model 

This subsystem is a classic sensor-controller-actuator system. 
Figure 5 gives a structural view of the main functions inside the 
controller: a data processing function for data coming from the 
sensor, the anti-locking brake function calculating the command 

context RTEMS_Task  
inv:  

if(Self.minPriorityLevel< Self.maxPriorityLevel) then  

Self.minPriorityLevel < Self.PriorityValue < 
Self.maxPriorityLevel 

else 

Self.maxPriorityLevel< Self.PriorityValue < 
Self.minPriorityLevel 

endif 
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to send to the actuator, and a diagnosis function that disables the 
anti-locking function in case a fault in the subsystem is detected. 

Each function above has an associated behavior modeled here as 
an activity. Figure 6 below complements the structural functional 
model with the description of the system end-to-end scenarios. 
Two events (acquisitionForAbs and acquisitionForDiagnosis) are 
triggering the sequences of functions behavior execution. 

 
Figure 6 .System-level behavior  

From this behavioral description, Qompass-Architect generates 
the design model given in the next subsection.  This generation 
relies also on some additional parameters defined in the system 
specification such as the activation periods of events and time 
budget of actions.  

5.1 Design model  
Figure 7 gives a schematic view of the design model of the 
antilock control subsystem generated by Qompass-Architect.  

 
Figure 7.Design model  

This model consists of two periodic tasks taks1 and task2 which 
are instances of the PeriodicOptimum_Task concept of the 
Optimum platform. The first task, task1, is triggered by the event 
acquisitionForAbs; consequently its period corresponds to the 
period of this event (60 ms). Besides, this task executes 
preProcessingBehavior and antiLockControlBehavior actions and 
then its execution time (timebudget) is the sum of the execution 
times of these two actions. Similarly, task2 is triggered by the 
acquisitionForDiagnosis event and executes the 
diagnosisBehavior and antiLockControlBehavior actions. 
Qompass-Architect gives to task1 a priority value equals to 20 and 
to task2 a priority value equals to 10. The priority order in the 
Optimum platform is increasing as specified in Figure 3 (given by 
minPriorityLevel and maxPriorityLevel attributes of the 
Optimum_Task). Accordingly, task1 has a higher priority than 
task2. These two tasks are dependent by sharing the AntiLock 
resource which corresponds to the antiLockControlBehavior 
action. Qompass-Architect chooses to implement this critical 
section with a PCP_Semaphore (i.e.  Boolean semaphore as a 
mechanism, a priority-based as a waiting queue and PCP as an 
access protocol).  
Based on these different implementations choices (priority 
assignment, critical section implementation, tasks number…), 
Timing validation is performed to verify whether this design 
model meets its timing requirements. Indeed, Qompass-Architect 
computes the blocking time depending on the implementation 
choices of the critical section and then computes the response time 

of the different tasks. The result of this validation is also given in 
Figure 7. From this figure, we can conclude that this model is 
valid from a real-time perspective since the response times of 
task1 and task2 are lower than their deadlines.    
We aim at generating a correct RTEMS-specific model from this 
valid design model. This implementation model must conserve the 
timing properties while considering the characteristics of the 
RTEMS platform. In the following subsection, we give this 
RTEMS-specific model.   

5.2 RTEMS-specific model   
The generation of the RTEMS-specific model following our 
approach requires passing through two steps; feasibility tests and 
mapping.  
For this design model, the feasibility tests step involves the 
different feasibility tests related to the priority aspect (c.f. section 
3.1) and the shared resources aspect (c.f. section 3.2.3). For this 
design model, this step does not raise any feasibility concern: the 
design model is implementable on RTEMS. Consequently, we 
process the mapping step to generate the RTEMS-specific model. 
Figure 8 gives a schematic view of the RTEMS-specific model.  

 
Figure 8.RTEMS-specific model 

This step performs the mapping between Optimum platform 
resources and RTEMS resources; and the properties of these 
resources. Consequently, RTEMS-specific model consists of two 
tasks instances of RTEMS_PeriodicTask concept which 
corresponds to the appropriate type that matches the 
PeriodicOptimum_Task resource in Optimum platform. It consists 
also of an AntiLock resource instance of the 
PCP_Semaphore_Resource which defines the same 
implementation of critical section chosen in the design model.   
For the properties, the mapping step detects that the only three 
properties that require mapping are the priorityValue, the period 
and resources (the other properties have a default value or they 
are not referenced in both platform models). This step proposes 
different strategies to perform the mapping of priority values (c.f. 
section 3.1). In Figure 8, we choose the proportional mapping of 
the priority values. The period values are expressed in ticks in 
RTEMS and the duration of a tick is configurable. We suppose 
here that the 1 tick is equal to 1 ms. This is why; the values of the 
period are kept the same at the implementation model. Finally, for 
the resource property we perform a direct mapping to keep the 
information that this resource (AntiLock) is shared between task1 
and task2.  

5.3 RTEMS-specific model verification    
In order to verify the correctness of the generated RTEMS-
specific model, three properties already explained in section 4 
should be fulfilled.   
The first property (P1) is that the priority values of the different 
tasks in the implementation model are between the minimum and 
maximum priority levels allowed by the RTOS which correspond 
respectively to 1 and 255 for RTEMS. We can conclude from 
Figure 8 that this property is verified as the priority values of 
task1 and task2 are within this interval.  
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The second property (P2) is that the execution order of the 
different tasks is equivalent at the design and the implementation 
level. To this end, we transform the design model to a model 
instance of the verification-oriented meta-model given in Figure 
4. This model (c.f. Figure 9) considers that our application is a 
relation of precedence among two priority levels LD1 and LD2. 
Each priority level references one or several tasks from the design 
level. In our case, we have just one task for each level since the 
design model does not define tasks with equal priority levels. 
From this model, the most important information is that, at the 
design level, task1 is executed before task2.  

 
Figure 9.Design model as an instance of the verification-

oriented meta-model  
In the same way, we transform the RTEMS-specific model to a 
model conforming to the verification-oriented meta-model given 
in Figure 4. This model is given in Figure 10 and defines also a 
relation of precedence among two priority levels LI1 and LI2. 
Each level references also one task from the implementation 
model.  

 
Figure 10.RTEMS-specific model as an instance of the 

verification-oriented meta-model  
From Figure 9 and Figure 10, we conclude that the second 
property is also fulfilled. In fact, even the priority values at the 
design and the implementation levels are different; the execution 
order of the two tasks is conserved.  
The third property (P3) is verified since the second property is 
fulfilled.  
All the properties are verified and thus the generated RTEMS-
specific model is correct.  

5. CONCLUSION  
In this paper, we propose an approach to ensure an automatic 
correct transition from a valid design model to an RTOS-specific 
model that conserves timing properties. This approach is based on 
two steps; the first step verifies whether the design choices are 
implementable on the target RTOS and the second step perform 
an appropriate mapping to generate the RTOS-specific model. In 
order to assess that the obtained RTOS-specific model is correct 
with respect to the design model, we identify the properties that 
should be verified and we propose a way to check them at the 
implementation level.  

As future work, we aim at considering other aspects such as 
activation patterns, communications in a distributed platform. For 

each aspect, we define the additional feasibility tests and mapping 
strategies. Another perspective consists in refactoring the design 
model, when the latter is not implementable, based on the 
feasibility tests step feedbacks.  
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ABSTRACT
Nowadays, more and more developments in the embedded
systems domain are based on components and abstract mod-
els. However, while the design becomes more abstract, con-
trol and monitoring during runtime are often performed on
low abstraction levels. In contrast to this low level access
we present a seamless design flow for adjustment and error
identification using abstract component-based models. We
develop an extended metamodel to describe components and
their platforms and the connection between the model and
the real hardware. Furthermore, we integrate on model level
platform abilities for control and especially debugging to
support for example real-time recording. From a user’s per-
spective the system is designed, controlled and monitored
on model level. We discuss different methods concerning
runtime control and monitoring of resource constraint sys-
tems. We demonstrate the concept’s applicability based on
two exemplary use cases: wireless sensor network application
engineering and reconfigurable hardware development.

1. INTRODUCTION
The complexity in embedded systems increases nowadays,
due to the rising functionality, demands and shorter pro-
duct cycles. Further challenges arise due to parallel and
distributed systems in connection with limited computing
power, interfaces and debugging capabilities. To handle this
rising complexity, more and more model-based design meth-
ods are used [10]. These methods aim at enhancing abstrac-
tion, scalability, maintainability and interoperability to in-
crease quality and decrease development time.

One methodology is to use component models. A component
encapsulates a set of related functionality and data. Com-
ponents communicate with each other via interfaces and are
configured using parameters. The main advantages of com-
ponents are their abstraction and the possibility of hierar-
chical reuse in other developments. In comparison to present
concepts (see Section 2) we concentrate on component-based
models for runtime adjustment and error identification and
consider the abilities, limitations and dependabilities in em-
bedded systems [6]. Especially, we examine the abilities of
on-chip control and debugging and integrate them on model
level. Our goal is to allow abstract runtime control and mo-
nitoring based on the same component model used at design
time. Therefore, we extend our previous work [13]. We con-

structed a new metamodel to be able to describe components
in more detail and also reflect the abilities of the platforms
as well as the connection between model and hardware. We
also integrate recording and debugging scenarios executed
central or on a target platform, which get managed from
model level. Additionally, we evaluated our approach with
two diverging application examples.

2. RELATED WORK
In industry, e.g. MATLAB / Simulink allows the design of
systems using predefined building blocks and can generate
C-code for embedded devices. During runtime the model can
be connected to hardware to monitor functional reactions.
This, however, can only be done for specialized devices. Let-
tner et al. discuss to use Rhapsody in the development of
embedded systems [10]. In terms of the runtime connection,
they describe the problem that graphical debugging with
animations is too slow for practical usage. The design and
usage of further runtime models and corresponding tools are
described in [15] and [8].

Component models are widely used in the software domain
(e.g. .NET, CORBA and EJB). These models are, how-
ever, generally complex and heavyweight and introduce large
overheads. The component-based approach for small and
large embedded systems is discussed in [2]. Further domain
specific languages (DSL) are introduced which are partly
based on the above languages. Cadena [7] is an IDE for
component-based distributed embedded systems. It con-
centrates mainly on static methods to analyze systems. In
[16] the Virginia Embedded Systems Toolkit (VEST) is in-
troduced, which focuses on the evaluation of different con-
straints. It also considers real-time applications, but does
not focus on functionality debugging. A platform indepen-
dent component modeling language is shown in [1]. It sup-
ports distributed as well as real-time embedded systems and
uses a component middleware. In terms of runtime activities
it considers the deployment and target environment. A Uni-
fied Modeling Language (UML) profile is the Modeling and
Analysis of Real-Time and Embedded systems (MARTE). It
is used in the design of a complex heterogeneous component-
based system [9]. The authors focus on the design, but
do not consider runtime aspects. Rich Component Models
for enhancing reuse in embedded systems are shown in [3].
These are used as a uniform representation of different de-
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Figure 1: Concept for model-based design, control
and monitoring of embedded systems.

sign entities to support management of functional and non-
functional parts in the development. A framework for de-
sign and runtime debugging of component-based systems is
shown in [17]. It enables to propagate checks from the speci-
fications to application code to validate interactions between
components. A framework and DSL for management of the
communication between heterogeneous resource-constrained
devices is shown in the ThingML-project [5].

In comparison to present concepts, we combine functional
control and monitoring of white-box elements with abstract
component-based architectural models. We explicitly model
control and monitoring of components and consider platform
specific functionalities to interact with embedded systems
from model level.

3. CONCEPT
Our concept follows the Model Driven Architecture (MDA)
introduced by the Object Management Group (OMG). We
focus as part of the MDA on the Meta Object Facility (MOF)
to describe our meta data architecture [11]. In addition, we
use adapted component models, based on the UML.

Our concept in relation to the different levels of the MOF
is depicted in Figure 1. On the M3-Level we use the Ecore
Meta-Metamodel, because our implemented model-based de-
velopment environment (see Section 6) is built using the
Eclipse Platform. We developed a metamodel for the M2-
Level, which extends existing component-based models and
composes of three relating parts. The first part describes
a Database, which stores individual components and plat-
forms as well as their abilities, characteristics and depend-
abilities. Furthermore, it includes the connection between
the model level representation and the hardware implemen-
tation. The modular elements are designed for easy reuse,
assembling and setup of the actual user-system. The User-
System Metamodel describes this actual user-system and is
build upon these elements. Thereby, the platforms and com-
ponents are connected and configured. The model is used
as a mutual representation at model level of the hardware
system at design time and runtime. In this relation, the
Debugging Metamodel manages the setups for debugging in
the IDE and on the platforms, which are described on model
level. It also holds recorded data for playback and analyzing.

The M1-Level is the level the developer is working on. In
the Database Model, as instances of the classes in the meta-
model, the individual components and platforms are spec-
ified. In the User-System Model on M1-Level the defined
components and platforms are instantiated, connected to
each other and configured to form the actual user-system.
Based on this and predefined component and platform tem-
plates the Source Code for implementation is generated.
This usually is a high level code, like C++ or VHDL. To
enable runtime control and monitoring, this code needs to
include communication and debugging capabilities, if not di-
rectly supported by the embedded Target Platform (see Sec-
tion 5). Using this code, a platform specific IDE generates
a Binary on M0-Level to program the embedded target.

After programming the Target Platform can be controlled
by modifying the User-System Model on M1-Level at run-
time. According to changes of the user and information in
the Database Model the IDE generates and sends Commands
to control the Target Platform. Thereby, restrictions apply
as not every element can be changed during runtime. The
Debugging Model manages debugging and recording. It con-
trols debugging in the IDE as well as on the Target Platform
from model level. The monitored Runtime Information is
interpreted and displayed in the User-System Model at M1-
Level and stored in the Debugging Model.

4. CONNECTIVE METAMODEL
As introduced in Section 3, the metamodel is built on three
relating parts according to a database of components and
platforms, a model to describe the actual user-system and a
part for managing debugging. Within the metamodel differ-
ent constraints apply, which are not included in the meta-
model to decrease its complexity. The constraints are speci-
fied using the Object Constraint Language (OCL) or, alter-
natively, are directly implemented in the IDE (Section 6).

Figure 2 depicts the metamodel without the attributes of
the classes. The Database part is shown on the left side,
it is adapted and extended from platform independent com-
ponent metamodels in software domain. It describes Compo-
nents with Interfaces, Parameters and Limitations. Thereby,
a component might have different hardware Implementa-
tions to be optimized, e.g., for functionality, available pa-
rameters or runtime abilities. An InOut interface models
the bus connections in the embedded system. According to
the Parameters, we distinguish between three different types
in an enumeration to differ between design time and runtime
data as well as adjustability. Configuration parameters can
be changed during the design time only, as they adapt gen-
erated source code. Control parameters can be modified
during the design time and at runtime and set the value of
variables or signals. Monitoring parameters are read-only
for the user and display a status during runtime. A param-
eter can be either a ParameterNumber to store a numerical
value or a ParameterList which excepts values from a prede-
fined list only. Both types provide a limitation of the value
range and are therefore suitable in the embedded domain for
direct translation into hardware. To form this connection to
the hardware the ImplementationCoding class is used in dif-
ferent aggregations of parameters and their possible values.
Using the available association, the availability of the coding
(and also of the connected element) can be specified depend-
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Figure 2: Metamodel for Database, User-System and Debugging.

ing on the implementation. Further limitations to compo-
nent relations and interface connections are integrated using
provide or require annotations in the LimitationDeclaration
class. In addition, the database includes information about
target platforms and their abilities.

The second part of the metamodel, depicted in Figure 2
in the middle, describes the actual UserSystem. Using the
Node and Subsystem structure it can be built hierarchically.
The PlatformImpl and ComponentImpl are implementations
of the corresponding elements in the database. When the
user integrates a component in the user-system, it gets au-
tomatically instantiated with its InterfaceImpl and Param-
eterImpl with references to the respective objects in the
database. The ConnectionImpl connects the InterfaceImpl
to form a network. The components are configured by set-
ting the values of their parameters in the ParameterDef
class. The IDE handles the limitations to ensure valid con-
nections and parameter values. The class ViewParameter
handles special parameters, which are used to specify rela-
tions to graphical representations. Therefore, the graphical
representation can adapt, also during runtime, to the status
of the component. Through these connection and limita-
tions between database and user-system different scenarios
can be constructed through reuse. In addition, the abstrac-
tion keeps easy (runtime) adaptability of components and
thus allows a direct connection to real hardware.

Debugging and recording are managed in the last part of
the metamodel. DebuggingSets are specified, which consist
of RecordingSetups and Recordings. A recording setup exe-
cutes in the IDE or is translated and configures an embedded
platform. In general, a recording can include triggers and
timers or can be handled manually. In addition, a preTrig-
ger functionality may allow recording of events before the
trigger starts by using ring buffers. The recorded values,
stored on model level, refer to according parameters and
belong to a certain TimeSlot. Through the connections in
the model the debugging can be completely specified using
abstract components and their parameters. In addition, if
it is executed on a target platform it can directly take the
available abilities into account. Using coding information
the recordings can be shown on model level later.

5. MODEL AND EMBEDDED TARGET
In this section we describe the connection and usage between
model level and embedded target according to the steps in
the development process (see Figure 3).

5.1 Design Time Connection
During design phase the individual components and plat-
forms are stored in the Database and combined and config-
ured in the User-System model to form the actual system.
After design and configuration, code templates of compo-
nents and platforms are used for generating the source code.
The code of the components and thus its behavior adapts
to the chosen implementation and the parameter values set.
The platform templates are used to form the network be-
tween the components and to install fixed components (e.g.
for runtime connection or debugging). In our IDE the code
templates are written with the Xpand-Framework and adapt
by including or excluding code sections and setting values
of variables or signals. In the next step the generated code
is integrated on the embedded target by a platform specific
IDE.

5.2 Runtime Communication
For runtime communication the interface and communica-
tion coordinator on the target is either added during the
code generation process (see previous subsection) or already
present in the system (e.g. debugging interface). The com-
munication takes place using bidirectional messages. These
messages are in a predefined format with constant and indi-
vidual parts including for example the ID of the component
as well as the coding of the parameters and their values. The
messages are the transport layer of the connection between
model and hardware at runtime.

Messages sent from the IDE to the embedded target are
generated and sent if the user changes control parameters in
the model. On hardware, these messages are directly inter-
preted and executed by the coordinator. For monitoring, we
consider three different ways, which might also be combined
depending on the abilities of the platform. The first pos-
sibility is to send a message if an event occurs and handle
message generation on the embedded target. The advan-
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embedded platforms.

tage is that the number of messages directly correlates with
the number of events. However, if too many events occur
simultaneously in comparison to the communication band-
width, information is lost in a usually indeterministic way.
In the second option, messages are sent on a regular basis,
regardless of occurring events. This is deterministic and in-
formation can be compressed. However, the reaction time is
lower and communication bandwidth is also a limiting fac-
tor. The first two methods are independent of the model, as
also the IDE, running on a PC, is generally faster than the
embedded system. In contrast, the third way polls informa-
tion from model level: messages are sent from the IDE and
the embedded system answers with the respective response.
Monitored information of interest can thus be selected by
the user in the model during runtime. The disadvantage is
the complexity and latency as two messages need to be sent.
Furthermore, usually on model level no knowledge on the
occurrence of events is present, resulting in a possible loss
of data due to a too low update rate.

5.3 Synchronization of Multiple Platforms
One further issue within runtime control and monitoring is
synchronization on model level between multiple distributed
platforms. This is important if these are not treated individ-
ually and interactions between the platforms are examined.
In general, synchronization needs to be considered if the
message time between IDE and the components on different
platforms is highly diverging and if this time becomes greater
than the time between two events. If synchronization is not
considered the model can become inconsistent, as it does
not show the actual status of the system. We consider two
different methods to deal with this problem if it occurs. In
the first method the frequency of the messages gets limited.
Therefore, the update rate for the values gets higher than
the communication time for the messages. However, this
limits bandwidth and parallelism of events. A synchroniza-
tion clock and a time stamp in every message can be used
as a further possibility [4]. Therefore, every message gets
independent and the arrival time is unimportant, if there is
no direct runtime representation. The disadvantage is the
additional data and that the clocks of the platforms need to
be synchronized.

5.4 Control, Monitoring and Recording
To control the embedded system during runtime only the
values of the control parameters can be changed on model
level. Neither can components be added nor can connec-
tions be changed. According to changes of the user and
coding of parameters and their values in the implementation
of the component, corresponding messages with commands
are generated and sent to the embedded target.

For monitoring and recording it has to be distinguished be-
tween three different possibilities, which we consider in our
concept. These options are not exclusive and can be ac-
tive at the same time. Communication in all methods is
performed during runtime as discussed in Section 5.2. Syn-
chronization (Section 5.3) needs to be taken into account if
considering a distributed system. In the first option, for di-
rect monitoring, messages from the embedded target are sent
during runtime and get directly interpreted and displayed in
the user-system model. This is used to get a runtime repre-
sentation of the status of the embedded target in the model.

The second method records the data in the IDE, i.e. on
model level. In large systems, the user can easily concen-
trate on important aspects by specifying triggers and play-
back the execution step by step. The main advantage is
that for recording and triggering all components and their
parameters can be arbitrarily combined on model level to
form complex scenarios across multiple platforms. However,
limitations of synchronization and bandwidth for the com-
munication apply, because only direct monitored parameters
can be recorded in the IDE. Therefore, typically real-time
recording is not possible. Using the first two methods only
an appropriate interface needs to present on the embedded
target, no additional platform hardware is necessary.

For on platform recording, the third method, the available
possibilities depend on the abilities of the debugger on the
platform. There is usually no inter-platform communication
to control the recording and therefore only components on
the same platform can be combined. Moreover, trigger, stor-
age and available bandwidth are platform depended and can
have limitations. The setup of recording and data transfer
is in non-real-time, due to the communication delay. How-
ever, as recording is executed exclusively on the platform, it
results in possible real-time recording and triggering. Plat-
form recording is specified and configured on model level.
This is easily possible as the functionality and handling as
well as the connection between model and implementation
is known through the other model parts.

All (recorded) status data are similarly interpreted and dis-
played abstract on the user-system model. The interpreta-
tion is performed according to the defined communication
messages and monitoring parameters. NumberParameters
are interpreted and displayed in their respective numerical
format and ListParameters use the display value and cod-
ing value for interpretation. This results in user-optimized
abstract access to the system instead of, e.g., cryptic er-
ror codes. In addition, we integrate an adaptable graphical
representation of information, e.g., the color of a graphical
component changes with the value of its parameters. In the
recordings the user can navigate step by step forward and
backward or jump on events directly.

6. PRACTICAL EXPERIENCES
To test and evaluate our concept we implemented a model-
based integrated development environment (IDE) along with
examples on a wireless sensor network (WSN) and a recon-
figurable hardware platform.

The IDE is based on the metamodel described in Section 4
and can interact with hardware interfaces for runtime con-
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Figure 4: Model-based IDE visualizing a wireless
sensor network.

nection to embedded platforms. The IDE is developed on
the Eclipse Platform, using the Eclipse Modeling Frame-
work (EMF) and Graphical Modeling Framework (GMF).
Figure 4 shows the IDE including visualization data of the
wireless sensor network example.

In the middle is the graphical modeling area (1), which
shows the actual user-system with components and their
interfaces and connections. In this example the components
are shown in front of a configurable background picture,
which represents the environment. The attached tool palette
on the right (2) shows the tools for integrating subsystems
and connections as well as the components stored in the
database. The other views are used to handle the param-
eters, implementations and platforms (3), connected to the
embedded target platforms, manage debugging setups and
recordings (4) as well as analyze recorded data (5).

The first example is a distributed WSN, originally intended
for the use in indoor ad-hoc localization scenarios [12]. The
nodes form a wireless multi-hop mesh network and are pro-
grammed in C-language. The IDE accesses the network
through a central data sink. We do not manipulate the
actual system structure and use the present multi-hop wire-
less network for communication. In the model the compo-
nents represent the sensor nodes, which have parameters for
configuration, control and show their actual status. For de-
sign the parameters configure the attributes of the nodes.
In the example, the localization algorithm is controlled and
the position of each node monitored during runtime. There-
fore, the nodes in the WSN are configured to periodically
send their position to the central node connected to the
IDE. For the WSN synchronization needs to be considered,
because the components run on multiple distributed plat-
forms. Therefore, other parameters are only polled on inter-
est to keep additional traffic as low as possible. For platform
debugging we integrate a fixed recording possibility, which
stores data on a local SD-card. A message starts the record-
ing and every platform records independently. In practice
this results in a small delay (a few ms), which can, how-

ever, be neglected for the localization scenario because of the
slow location changes of tracked objects. During runtime,
the user-system model represents the WSN in the IDE. The
position of a node is used for the position of the graphical
component in the model in front of an environment picture
to represent the location. This enables the model to be a
demonstrative representation of the system with direct ac-
cessibility for adaptations of the algorithm.

The second example is a reconfigurable hardware platform
including a Xilinx Virtex-II Pro Field Programmable Gate
Array (FPGA). The components are individual hardware
modules implemented in VHDL running on a single FPGA.
The example is based on previously published work and has
been extended to the new concept [13]. In the template of
the platform, besides the component network we integrated
an additional small microprocessor and communication net-
work to manage runtime control and monitoring. This raises
the complexity, but has the advantage that the component
network remains independent. In addition, we integrated
our real-time on-chip hardware debugger [14]. During de-
sign, the user can assemble, configure and connect different
available components in the user-system model. In addition,
as the on-chip debugger is integrated in the code genera-
tion process, the user needs to set the parameters of interest
at design time. During runtime a synchronization problem
does not exist as all components are located on a single
platform. In practice, there is only a delay of typically less
than a half second for messages in both directions, because
of the multithreaded IDE and the communication interface.
The directly monitored parameters can be selected on model
level during runtime. This selection is transmitted once to
the microprocessor, which sends a message on every appli-
cable event. This got the advantage of runtime flexibility
controlled from the model, but rises the complexity and is
also limited by the speed of the microprocessor and the inte-
grated network. For on-chip real-time debugging, recording
and triggering are set at runtime, but limited up to a fixed
complexity and to the preselected parameters of interest.
Thereby, the on-chip debugging is controlled with respect to
the components in the model, which represents the system
and later show the recorded data.

In both systems, to enable runtime control, monitoring and
recording, we instrument the components. This additional
effort has to be taken, to get the components as white box
modules to control and monitor their internal parameters.

7. CONCLUSIONS AND OUTLOOK
In this paper we presented a concept for design, runtime ad-
justment and monitoring of embedded systems using compo-
nent models. We developed a seamless model-based devel-
opment, especially considering runtime control and monito-
ring aspects and abilities of embedded hardware platforms.
This extends the reuse, scalability and maintainability by
abstraction from low-level adjustments and error identifi-
cation using abstract component models, which comprehen-
sively represents the system at all times. Furthermore, using
model level for configuration, control and monitoring eases
the usage of different systems from the user’s perspective as
the user does not necessarily need to know every detail about
handling variables or signals on every individual platform.
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We introduced a metamodel, which allows the description
of components with interfaces, parameters and limitations
in combination with execution platforms and their abilities.
A platform independent adapted component model is used
for design as well as runtime control and monitoring of the
actual user-system. Besides the adjustment, also the de-
bugging setup is included on model level. The concept also
considers platform specific debugging facilities and interacts
with these during runtime to enable, e.g., real-time plat-
form debugging. The monitored data are annotated and
integrated into the (graphical) component model. To show
the applicability two diverging practical scenarios are cho-
sen. The example WSN application shows the possibility of
the integration of a present distributed system with our ap-
proach. The second example with reconfigurable hardware
showed a range of possibilities in interacting with a highly
configurable platform. The limitations of the concept are in
conjunction with the design and implementation of the indi-
vidual components/platforms and the additional necessary
information to connect models and hardware. This is espe-
cially the case for the considered small embedded platforms
not able to run an operating system or middleware.

In the future we want to apply and evaluate our concept
to large embedded systems and also include heterogeneous
systems with different embedded platforms. Furthermore,
we want to integrate more platform functionalities (e.g. in
terms of profiling) and communication analysis (e.g. bus
load) which can be controlled and monitored from model
level. We will also further investigate on the model and
integrate composite components and ease the handling and
definitions of the components and platforms in the IDE.
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ABSTRACT
We consider the class of embedded systems user interfaces
(ES-UI). They differ from classical graphical user interfaces
because they use only a limited but possibly multi-modal
number of inputs and offer numerous different user interface
modes. We propose the domain specific language ESUIL in
order to improve the quality of ES-UI software.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering (CASE), Evo-
lutionary prototyping, Structured Programming, User Inter-
faces; H.5.2 [Information Interfaces and Presentation
(e.g., HCI)]: User Interfaces—interfaces – Graphical user
interfaces, Interaction styles, Input devices and strategies,
Prototyping, Voice I/O; J.7 [Computers in Other Sys-
tems]: Command and Control, Consumer Products

General Terms
Design,Documentation,Languages,Reliability

Keywords
Embedded systems, user interfaces, model-based design, do-
main specific languages.

1. INTRODUCTION
There are embedded systems which interact not only with a
physical plant via sensors and actuators, but also with hu-
man users. Examples range from process control systems to
the huge domain of consumer electronics where the quality of
the user interface is certainly an aspect of the product’s suc-
cess. For instance, contemporary top-of-the-market fridges
provide a graphical display where, among others, the tem-
perature of different compartments is monitored and con-
trolled, the operation mode of an ice-maker is chosen, and
the user is reminded of the need to change the water filter.

In case of the fridge, all user input is read from a small num-
ber of buttons on the front panel as there is no standard
keyboard and no mouse. The buttons are assigned differ-
ent actions depending on the current user interface mode,
i.e., the same button, that switches the ice-maker off when
the user interface mode is to control the ice-maker, is used
to increment the target temperature of the main compart-
ment when the user interface mode is to control the main
compartment’s temperature.

Technically, the user interface controller is separated from
the plant controller. That is, the fridge comprises two em-
bedded controllers: one which is responsible for controlling
the plant, e.g., to reach the desired cooling temperature,
and one which provides the user interface. The two con-
trollers communicate with each other via a bus interface in
both directions. The user interface controller requests the
current temperature and sends changed temperature values,
the plant controller notifies the user interface of events such
as critically high temperatures. In addition, there are many
user interface actions which never reach the plant controller,
such as changing the current language setting or display
brightness, or the usage of integrated egg-timers. This is a
classical separation of concerns which makes both controllers
easier and allows for an independent development of both.

For us, an embedded system’s user interfaces (ES-UI) is char-
acterised as follows:

• the ES-UI provides a finite number of user interface
modes which is indicated to the user by a (possibly
graphical or textual) output interface, (such as mon-
itoring temperature, changing target temperature, or
changing ice-maker mode),

• in each user interface mode, the ES-UI accepts only a
finite number of inputs, that is, there is in particular
no standard keyboard, and

• the user inputs are given via a physical input inter-
face which provides only finitely many different events
(such as the buttons on the front panel of the fridge),

• the ES-UI interacts with a separate plant controller by
requesting and sending data, (such as the current and
new target temperature in the fridge), and

• the plant controller can notify the ES-UI asynchronously
about a finite set of events (such as critically high tem-
perature in the fridge).
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Embedded systems are not limited to graphical or textual
representations of information. On the one hand, the user
interface may simply consist of a single light emitting diode
(LED) on the casing and one button. The LED may blink
slowly to indicate execution of a certain task, and quickly
to indicate that the task failed. Pressing the button shortly
may start one task, pressing the button longly another. On
the other hand, given the decreasing cost of touchscreens
or cameras and microphones and the increasing power of
embedded controllers, the in- and output interfaces of em-
bedded system may as well comprise gestures, voice, and
finger moves.

Thus, the realisation of an ES-UI can be complex software.
ES-UI are nowadays often developed manually [5]. Detect-
ing implementation errors such as unintentional non-determinism,
lacking mappings of buttons to internal events, uninten-
tional mappings of buttons in user interface modes where
they should not be enabled, etc. by tests is hard as the
number of test cases grows exponentially with the number
of user interface modes and inputs [6]. Similarly, misunder-
standings in requirements are often only identified if at least
a mock-up version of the ES-UI is available to the customer.

We propose a model-based approach to ES-UI development.
We introduce a domain specific language (DSL) which is
tailored for the domain of ES-UI. It provides means to de-
clare the ES-UI interface with the user and the plant con-
troller (the system). The central element of our DSL is the
screen which corresponds to a user interface mode. Transi-
tions between screens are triggered by system events or user-
interface events. To this end, each screen provides a map-
ping from available buttons to user-interface events. Our
DSL promises to improve the quality of ES-UI software in
the following ways. Firstly, an ES-UI model can be sim-
ulated for validation, that is, instead of using a mock-up
for the validation of ES-UI requirements, scenarios can be
demonstrated to the customer at hand of the model. Sec-
ondly, the ES-UI model may serve as the requirements spec-
ification communicated between customer and developer.
While a simulation for validation can principally also be ob-
tained using generic, domain-inspecific modelling languages
such as UML, we expect our DSL presented in a visual con-
crete syntax to be by far more accessible to ES-UI develop-
ers, which are today often classical electical engineers with-
out specific education in UML, and also to technically skilled
customers. The final software is then considered correct if
and only if it has the same behaviour as the model. On the
model, quality aspects such as absence of non-determinism,
whether there are sufficiently many buttons to map to user-
interface events, whether mappings are complete, or whether
there are ineffective buttons in any user interface mode can
effectively be checked on the ES-UI model as well as more in-
volved functional requirements, for instance, that from each
screen, it is possible to reach the main screen again by press-
ing finitely many buttons. Thirdly, correct ES-UI software
in the above sense can automatically be generated from the
model. This effectively avoids mistakes which stem solely
from the manual approach to implementation. And finally,
we imagine our DSL to serve in the documentation of the
final product.

UI Controller Display

Plant Controller

Bus

Buttons

Figure 1: Fridge system architecture.

Figure 2: Example screens of user interface modes.

2. EMBEDDED SYSTEMS
USER INTERFACES

In order to understand the needs of embedded systems user
interfaces, we analysed the user interface of a contempo-
rary top-of-the-market fridge, including the corresponding
requirements documents and the software. The company
which developed the user interface software for the fridge
manufactures provided the documents in a cooperation pro-
ject. The fridge system is particularly suited for the analysis
of embedded systems user interfaces because user interface
controller and plant controller are explicitly separated and
communicate via a bus. Therefore it is clearly identifiable
which behaviour is specific to the user interface. For in-
stance, changing the user interface language should clearly
not be a concern of the plant controller.

The user interface consists of a monochrome 254x128 dot
matrix LCD display and six buttons, three to the left and
three to the right of the display (cf. Figure 1). The buttons
are operated as so-called soft keys, that is, they have a dif-
ferent effect depending on the user interface mode. Parts
at the sides of the LCD are reserved to indicate the effect
of each button by an icon, or no icon at all if the button
is not effective. The user interface offers different modes
consisting of a screen layout and a particular mapping of
buttons to functions. By default, the display only shows the
current target temperature for the three compartments (cf.
Figure 2). In this mode, one of the buttons is mapped such
that it switches to a mode where the target temperature can
be set (cf. second screen in Figure 2). Then and only then,
two of the buttons are mapped such that they increment
or decrement the target temperature. The remaining user
interface modes comprise, for instance, a mode where the
display brightness can be set.

The final requirements document for the user interface is
given in form of a word processor document. Behaviour
is described in the form of informal use cases and scenar-
ios, which are rather paintings than precise specifications.
Scenarios consist of sequences of images showing screens as
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the ones in Figure 2. Each image comes with an indication
which button the user presses in this scenario, the subse-
quent screen shows the desired effect. For instance, there
is a scenario starting with the leftmost screen in Figure 2
and an indication that the topmost button on the right is
pressed. The subsequent screen is then the one shown in
the middle of Figure 2, that is, in the default user interface
mode, it should be possible to switch to the mode where
the target temperature is set — we call this a logical user
interface event — using the topmost button on the right. In
addition, there are natural language descriptions of the sce-
nario. Many of the images look almost identical, except for
small changes. These changes do not influence the presen-
tation of the display much, i.e. the layout and the available
functionality often stay the same to a large amount.

As in many software development projects, the final require-
ments document is the result of multiple iterations where the
developer built a mental, constructive [3] model of the be-
haviour from the given reflective description and validated
this mental model with the customer. Validation results
were integrated into new versions of the word processor doc-
ument. This form of requirements specification as employed
in the considered project was found to be inefficient and er-
ror prone by the participating engineers. Inefficient because
there were small conceptual changes which caused changes in
large parts of the document and error prone because scenar-
ios were found to be conflicting or to be under-specifications
of the actual requirements. Visual aspects of the user in-
terface were largely excluded from this requirements elicita-
tion process. The final code is developed using the mental,
constructive model of the user interface behaviour which is
established in the requirements validation phase. The con-
structive model is hardly documented; if at all, then in form
of code fragments.

In the source code which realises the user interface of the
fridge, one can identify a clear division into responsibilities.
There is a module which deals with the bus communica-
tion, a module which realises the logical behaviour of the
user interface, i.e., the mapping of buttons to functions and
switching between user interface modes, and there is a mod-
ule which deals with the graphical design of the user inter-
face, that is, which renders, e.g., the temperature figures,
icons, and text on the display. The implementation was
done manually. The resulting code is of high quality (well-
structured, well documented) yet the developers see the risk
of mistakes. For example, the mapping of buttons to func-
tions is realised via arrays of function pointers. When using
copy-and-paste as usual, there is a certain risk that buttons
remain mapped although they shouldn’t be or to assign the
wrong icon (depicting the user interface event) to a button.
A mistake which is difficult to detect in tests; testers may
not consider to try buttons which are unmapped accord-
ing to the display, but erroneously mapped according to the
function pointer array.

Following [11], a user interface model can be structured into
three different models. The System Model “represents the
physical system”. The GUI Logical Model “is a model of the
GUI in its behavioural aspects. We don’t have its actual
visual representation here, but only its abstraction in terms
of interaction — what objects make it up, what are their

structural parameters, what they accept and return, and
how they interface with the objects of the system in terms
of commands and values.” The GUI Visual Model “models
the visual aspects of the GUI and the associated semantics.”
Interactions take place between System and GUI Logical
Model and between GUI Logical and GUI Visual Model.

We find a corresponding structure in the software of the
fridge user interface. The plant controller is the system
layer, the module of the user interface controller software
which realises the logical behaviour of the user interface is
the UI logical layer, and the module which renders icons and
text on the display is the UI visual layer. For the develop-
ment of the fridge user interface, the focus was on the UI
logical layer. The system layer was already existing with
a well-defined interface. A more detailed model of the be-
haviour of the plant controller was not necessary. The nego-
tiation of the requirements interface was (strictly speaking)
conducted independently from the graphical representation.

3. ESUIL
To improve the quality of user interface software with re-
spect to validity (“are we building the user interface which
is desired by the customer?”) and correctness, we propose
to offer means to the developer which allow her to make the
mental, constructive model of the user interface behaviour,
the UI logical model, which is established during the require-
ments validation phase explicit.

These means should on the one hand allow for easier and
more precise communication with the customer, for instance
by offering live simulation to demonstrate scenarios, and on
the other hand offer code generation facilities in order to
avoid errors which stem from the manual implementation
such as unintentionally mapped buttons. To this end, we
assume that the interface via which user interface and plant
controller communicate is given. Furthermore, we propose
to consider graphical design aspects of the ES-UI only in a
very abstract form.

Our new domain specific modelling language introduced here
as the desired means is supposed to be employed in a model-
based user interface development process (MBUID) [10]. We
propose to view an ES-UI on the UI logical layer as a finite
set of user interface modes or screens. A screen need not be
associated with any information about objects or widgets
on it. Transitions between screens are triggered by logical
events which we distinguish from physical events to support
the development of ES-UIs with narrow input interface. Ex-
amples for a single physical event are pressing the topmost
button on the right on the fridge, or pressing the two lower-
most buttons at the same point in time. Physical events may
be mapped to logical events. For example, the physical event
“topmost button on the right pressed” is mapped to the log-
ical event “switch user interface mode” in the default screen
of the fridge. Supporting logical events as well as physi-
cal events is necessary because the mapping between both
determines the behaviour of the final user interface. Fur-
thermore, realising the mapping between both is a potential
cause of errors. An explicit representation of the mapping
allows us to verify the model already in the requirements val-
idation phase, e.g., by automatically checking whether, for
each screen, there are enough physical events for all logical
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Figure 3: ESUIL model of the simplified fridge.

events. Furthermore, considering physical and logical events
separately provides a degree of freedom regarding modality.
The ES-UI model for the fridge with six buttons could easily
be re-used for a fridge with a touchscreen by just changing
the mappings.

In the following, we introduce the abstract syntax and se-
mantics of the domain specific modelling ESUIL.

To characterise the input-/output interface of the UI-controller
(cf. Figure 1), we firstly assume that the set of notifications
by the plant controller to the UI controller and, e.g., data
requests from the UI controller to the plant controller are
given as system-out and system-in events, respectively. Sec-
ondly, we assume that the set of possible user inputs, the
so-called physical events, is given. And finally, we assume
that a set of logical or UI-events is available. Formally, we
group these sets in a signature defined as follows.

Definition 1. An ES-UI signature is a quadruple

I = (U , Sin , Sout , P)

where U is a set of UI-events, Sout is a set of system-out
events disjoint to U , Sin is a set of system-in events, and P
is a set of physical events. ♦

Note that we require system-out and logical events to be
disjoint because they will be used as triggers of edges and we
want distinguish whether edges are triggered by user inputs
or system outputs.

The user interface of the fridge is much too large to serve
as a complete running example. So we consider a simplified
fridge with only two buttons A and B and a display. In
addition, we assume that we can detect that button A was
pressed for at least 3 seconds before being released. The sim-
plified fridge basically offers two monitoring user interface
modes, one showing the current target temperature of the
single compartment and one showing the current average en-
ergy consumption. From the mode showing the current tar-
get temperature, a mode can be reached where the buttons
increment and decrement the target temperature. In addi-
tion, the fridge can display a warning if the plant controller
detects a critically high temperature in the compartment.

To model the simplified fridge, we choose P = {A, B, A3}
corresponding to the inputs we distinguish for the buttons,
Sout = {ht} for the high temperature warning from the plant
controller, Sin = {inc, dec} to increment and decrement the
target temperature, and we choose the user interface events
U = {✷, •, �, �}.

Definition 2. An ES-UI model is a structure

M = (Z, zini , I, E , Ψ)

where

• Z is a finite set of screens, zini ∈ Z is the initial screen,

• I is an ES-UI signature,

• E ⊆ Z × (U ∪ Sout) × (Sin ∪̇ {·}) × Z is a set of directed
edges. An element (z, ε, α, z�) ∈ E describes an edge
from screen z to screen z� labelled with the trigger
ε ∈ U ∪ Sout and the action α ∈ Sin ∪̇ {·}, where “·”
is the dedicated nil-action which is not supposed to
appear in Sin , and

• Ψ : Z → (P � U) is a function that assigns to each
screen a physical-to-UI-events mapping. A physical-to-
UI-events mapping assigns each screen z ∈ Z a partial
function Ψ(z) : P � U (also denoted by ψz for short)
which maps physical events to UI-events. ♦

To model the simplified fridge, we use four screens z1 (mon-
itor target temperature), z2 (monitor energy), z3 (change
target temperature), and z4 (high temperature warning).
z1 is the initial screen. The edges are given by Figure 3. For
instance, the right self-loop on z3 represents (z3, �, inc, z3).
It models the desired behaviour that the UI-event � is en-
abled in screen z3 and has the effect that the system event
inc is sent to the plant controller. Physical-to-UI-events-
mappings are given by the tables in Figure 3. For instance,
in screen z1, all three physical events are mapped to differ-
ent UI-events. Pressing A for more than three seconds in z1
enables the mode z3. In the warning screen z4, both but-
tons A and B are mapped to ✷ which confirms the warning.
Pressing A for more than three seconds has no effect in z4.

Definition 3. Let M = (Z, zini , I, E , Ψ) be an ES-UI model
with ES-UI signature I = (U , Sin , Sout , P).

A finite or infinite sequence π = z0
ε0−−→
α0

z1
ε1−−→
α1

z2
ε2−−→
α2

. . .

with zi ∈ Z, εi ∈ U ∪ Sout , and αi ∈ Sin ∪̇ {·}, is called
UI-computation of M starting in z0 if and only if, for all
i ∈ N0, there is an edge (zi, αi, εi, zi+1) in E .

A UI-computation of M starting in the initial screen zini is
called UI-computation of M. ♦

The sequence

π = z1
�−→
·

z2
�−→
·

z1
•−→
·

z3
�−−→

dec
z3

�−−→
dec

z3
•−→
·

z1
ht−→
·

z4
✷−→
·

z1

is a UI-computation of the simplified fridge model. It cor-
responds to firstly checking the energy consumption, then
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again the temperature, decrementing the target tempera-
ture by two units, monitoring the temperature again, and
finally confirming a high-temperature warning. Note that
high-temperature warnings get lost in screen z3.

Definition 4. Let M = (Z, zini , I, E , Ψ) be an ES-UI model
with ES-UI signature I = (U , Sin , Sout , P).

A finite or infinite sequence ι = z0
p0−−→
α0

z1
p1−−→
α1

z2
p2−−→
α2

. . .

with zi ∈ Z, pi ∈ P, and αi ∈ Sin ∪̇ {·}, is called (user)
interaction of M starting in z0 if and only if there is a UI-
computation

z0
ε0−−→
α0

z1
ε1−−→
α1

z2
ε2−−→
α2

. . .

of M starting in z0 where for all i ∈ N0, either εi ∈ Sout , or
ψz is defined for physical event pi, i.e. pi ∈ dom(ψzi ), and
εi = ψzi (pi).

An interaction of M starting in the initial screen zini is
called (user) interaction of M. ♦

A user interaction corresponding to π is

ι = z1
B−→
·

z2
B−→
·

z1
A3−−→

·
z3

A−−→
dec

z3
A−−→

dec
z3

A3−−→
·

z1
ht−→
·

z4
A−→
·

z1.

Definition 5. Let M = (Z, zini , I, E , Ψ) be an ES-UI model
with ES-UI signature I = (U , Sin , Sout , P).

A screen z ∈ Z is called UI-reachable in M if and only if
there exists a UI-computation

π = z0
ε0−−→
α0

z1
ε1−−→
α1

z2
ε2−−→
α2

. . .
εn−−→
αn

zn

of M such that zn = z.

z is called interaction-reachable in M if and only if there
exists an interaction

ι = z0
p0−−→
α0

z1
p1−−→
α1

z2
p2−−→
α2

. . .
pn−−→
αn

zn

of M such that zn = z. ♦

Screen z3 is UI- and interaction-reachable in the simplified
fridge model. Screen z4 is also UI- and interaction-reachable,
but each user interaction which reaches z4 comprises an ear-
lier system-out event.

4. QUALITY CRITERIA
In the following, we use our formal definition of ESUIL to
formalise four quality criteria for ES-UI designs. Designs
which do not satisfy these quality criteria are commonly con-
sidered erroneous in ES-UI development. All properties are
efficiently decidable for ESUIL models as checking whether
an ESUIL models satisfies these quality criteria amounts to
screens and outgoing edges once.

Definition 6. An ES-UI M = (Z, zini , I, E , Ψ) with ES-
UI signature I = (U , Sin , Sout , P) is called deterministic if

and only if there does not exist a screen with different out-
going edges having the same trigger, i.e. if

∀ (z1, ε1, α1, z�
1), (z2, ε2, α2, z�

2) ∈ E •
z1 = z2 ∧ ε1 = ε2 =⇒ α1 = α2 ∧ z�

1 = z�
2.

Otherwise, M is called non-deterministic. ♦

Definition 7. Let M = (Z, zini , I, E , Ψ) be an ES-UI model
with ES-UI signature I = (U , Sin , Sout , P). The signature I
is called sufficient wrt. M if for each screen, the number of
physical events in P is large enough to be mapped to all UI
events occurring at outgoing edges, i.e. if

∀ z ∈ Z • |{ε ∈ U | ∃ α, z� • (z, ε, α, z�) ∈ E}| ≤ |P|.

Otherwise, I is called too narrow wrt. M. ♦

Definition 8. An ES-UI M = (Z, zini , I, E , Ψ) with ES-
UI signature I = (U , Sin , Sout , P) is called fully mapped if
and only if there does not exist an edge in M which is trig-
gered by a UI-event that is not in the range of the physical-
to-UI-events mapping of the source screen, i.e. if

∀ (z, ε, α, z�) ∈ E ∃ p ∈ P • ψz(p) = ε.

Otherwise, M is called partially mapped. ♦

Definition 9. An ES-UI M = (Z, zini , I, E , Ψ) with ES-
UI signature I = (U , Sin , Sout , P) is said to have effective
physical events if and only if for each screen, if there is a
physical event mapped to a UI-event ε, then there is a cor-
responding outgoing edge with trigger ε, i.e. if

∀ z ∈ Z, p ∈ P, ε ∈ U•
ψz(p) = ε =⇒ ∃ α ∈ Sin ∪̇ {·}, z� ∈ Z • (z, ε, α, z�) ∈ E .

Otherwise, M is said to have ineffective physical events. ♦

As UI- and interaction-reachability are decidable for ES-
UIL models, which reduce to finite state machines, we can
employ LTL or CTL to state more general requirements.
Examples are additional generic quality criteria such as the
absence of UI- or interaction-unreachable screens, or, in case
of the simplified fridges, the design specific requirement that
the initial screen is interaction-reachable from all screens in
the model.

5. CODE GENERATION
From an ESUIL model, a skeleton for the user interface soft-
ware can be generated which refers to an abstract interface
(1) to the system, (2) to the physical events, and (3) to the
UI visual layer. For the first case, the code simply assumes
a method or function called like the system event. In case of
the simplified fridge, these would be the functions inc and
dec. These functions need an implementation which com-
municates with the plant controller. Similarly, we assume
an interface to the plant controller which emits system-out
events such as ht in the simplified fridge.

For the second case, we assume an interface which reads
the buttons and generates pre-filtered physical events. For
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example in the simplified fridge, we don’t plan to generate
the code which measures whether button A has been pressed
for more than three seconds. Yet such a code generation can
easily be integrated into ESUIL by assuming a description
language over buttons which allows us to denote, e.g., button
combinations.

For the third case, we require a redraw method or function
per screen. Each time, a screen is entered via a transition,
the framework calls the redraw method. The implementa-
tion of the redraw method is supposed to realise the visual
UI design decisions.

6. CASE STUDY
We have used an extension of ESUIL with hierarchical screens
to model the user interface of the top-of-the-market fridge.
The model covers top-level user interface modes, different
modes for changing the target temperature of the different
compartments, and the user interface modes for fridge and
user interface settings.

7. RELATED WORK
There is a huge body of work on model-based development of
user interfaces which targets user interfaces which we term
as desktop user interfaces (ranging from early works like [4]
to more recent works like [9]). The difference to embedded
systems user interfaces is that user interaction takes place
via virtual controls that are part of the graphical output
medium. Most prominently widgets that can be clicked on
using a mouse, or by shortcuts defined on a standard key-
board. Consequently, there is no need of mapping (physi-
cal) buttons to user-interface events, the virtual button is
the user-interface event. Our approach in contrast considers
physical controls. We support the development of user in-
terfaces for embedded systems which are controlled by, e.g.,
physical buttons on the panel of the device that the com-
puter system is embedded into.

For instance [7], supports the development of interactive
applications for complex process control. Process control
software is supposed to monitor and adjust exactly the val-
ues of the controlled process. They require a sophisticated
structural model of the controlled process. The declaration
of system events can be seen as a very simple instance of
such a model. Furthermore, our approach is not limited to
process control. Strictly speaking there need not even be a
controlled process, then the sets of system-in and -out events
are empty.

Closer to our approach is Dygimes [2]. They assume a task
model in form of a ConcurTaskTree (CTT) [8], which we
don’t assume. The DSL we propose here could be used as
an intermediate language in the Dygimes approach. The
BATIC3S approach [1, 11, 12] also assumes a CTT task
model. Our approach adopts the idea of distinguishing three
levels of abstraction for an UI model (cf. Section 2).

The authors of [5] give an overview over the current situation
and the most important achievements in the last 30 years
of model-based user interface development (MBUID) from
their point of view. The overview is based on the Cameleon
Reference Framework (CRF), which “serves as a reference
for classifying UIs that support multiple targets, or multiple

contexts of use on the basis of a model-based approach”. In
terms of CRF, our approach provides an interface structure
for all these layers of abstraction to different extents in the
following sense. Firstly, our model is supposed to fully cover
“Tasks & Concepts”. From “Abstract UI” we support the
logical part, the placement of objects on the screen is of no
concern for us but this information can be supplemented,
e.g., by attaching it to our screens. In the “Concrete UI”
(CUI) phase, our concrete physical events are determined.
ESUIL contributes to “Final UI” (FUI) in form of code gen-
eration,

8. CONCLUSION AND FURTHER WORK
Based on a thorough analysis of the needs of ES-UI devel-
opers, we propose the new domain specific language ESUIL
as a means to improve the quality of ES-UI software. Our
formal definition of the abstract syntax and the semantics of
the new domain specific language ESUIL allows us to pre-
cisely define common errors in ES-UI development. This is
a first step towards avoiding these errors in the future.

Future work first of all comprises a full elaboration of ES-
UIL. For ESUIL to be practically useful, we need to work
out an appealing concrete syntax, that is, ESUIL models
should be presented as shown in Figure 3. The fridge case
study shows that ESUIL needs to be extended by hierarchi-
cal states similar to statecharts. Furthermore, code gener-
ation needs to be elaborated to be able to apply ESUIL to
more case studies.
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ABSTRACT
The Architecture Analysis and Design Language (AADL)
has been widely accepted to support the development pro-
cess of Distributed Real-time and Embedded (DRE) systems
and ease the tension of analyzing the systems’ non-functional
properties. The AADL standard prescribes the dispatching
and scheduling semantics for the thread components in the
system using natural language. The lack of formal semantics
limits the possibility to perform formal verification of AADL
specifications. The main contribution of this paper is a map-
ping from a substantial asynchronous subset of AADL into
the TASM language, allowing us to perform resource con-
sumption and schedulability analysis of AADL models. A
small case study is presented as a validation of the usefulness
of this work.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.11 [Software Engineering]:
Software Architectures—Languages

General Terms
Reliability, Verification

Keywords
AADL, TASM, verification, formal methods, formal seman-
tics

1. INTRODUCTION
Distributed Real-time and Embedded (DRE) systems de-

ployed for instance on avionics and aerospace platforms is
one of the most safety-critical categories of systems. Usually,
DRE systems consist of many local subsystems. Compared
with more traditional all-in-one systems, distributed systems
tend to have a larger number of non-deterministic aspects.
Therefore, designing distributed systems demands more con-
trol during the development phases and the use of rigorous
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methodologies. Moreover, ensuring that the produced sys-
tem conforms to all stringent functional and non-functional
requirements is a very complex and time consuming task.
For instance, one common headache with DRE systems is
how to, with a high degree of trust, analyze the impact of
event triggered aperiodic/sporadic threads to its local sub-
system and verify the functional and non-functional require-
ments of the local system under this circumstance. The
model- and component-based development approaches have
emerged as attractive options for the development of DRE
systems. The Architecture Analysis and Design Language
(AADL) [16] has been widely accepted to support the de-
velopment process of DRE systems and ease the tension of
analyzing the systems’ non-functional properties. However,
the lack of formal semantics limits the possibility to per-
form formal verification of AADL specifications. Although
efforts have been made towards specifying formal seman-
tics of AADL [1, 3, 7–11, 17, 18] there are still some open
questions left. For instance, asynchronous interactions, i.e.,
aperiodic and sporadic threads, are to our knowledge not
covered. Within this context, we are motivated to consider
an asynchronous subset of AADL in our work of providing
a formal semantics of AADL.

We have chosen Timed Abstract State Machine (TASM)
[14] as the language to define the formal semantics. TASM is
a novel specification language, which has been shown the po-
tential to express formal semantics of AADL [15]. Especially,
two distinctive features make TASM stand out. Firstly,
TASM supports the specification of both functional and non-
functional behavior. The non-functional properties that can
be expressed include timing behavior and resource consump-
tion. Secondly, the TASM toolset provides procedures for
analysis of completeness, consistency, execution time and
resource consumption. Analysis of time-related properties
is provided through a translation into timed automata – the
input language for the Uppaal model-checker [2].

The main contribution of this paper is a translation of
a chosen subset of AADL into TASM, allowing us to per-
form resource consumption and schedulability analysis. and
schedulability analysis of AADL models. A small case study
is presented to show how AADL models can benefit from
this work. The rest of the paper is organized using the fol-
lowing structure: Brief overviews of AADL and TASM are
presented in Section 2 and Section 3, respectively. Section
4 describes the formal semantics for the chosen subset of
AADL. Section 5 presents the corresponding transformation
rules. Section 6 shows a case study applying the translation
and performing the resource consumption and schedulability
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analysis. Some concluding remarks can be found in Section
7.

2. A BRIEF OVERVIEW OF AADL
AADL was released and published as a Society of Au-

tomotive Engineers (SAE) Standard AS5506 in 2004 [16].
It is a textual and graphical language, which describes the
architecture of component-based systems as an assembly of
software components mapped onto components representing
the execution platform.

Data, subprograms, threads, threads group and processes
collectively represent application software components. Pro-
cessor, memory, bus and device collectively represent the
execution platform. Execution platform components sup-
port the scheduling and execution of threads, the storage
of data and code, and the communication behavior between
processes. Systems are called compositional components.
They allow software and execution platform components to
be organized into hierarchical structures with well-defined
features. AADL offers an execution model that addresses
most of the runtime-needs of real-time systems: (1) a set of
execution model properties can be attached to each AADL
declaration; (2) the semantics of the execution model is also
described, namely, the execution semantics of AADL. How-
ever, most of it is defined using a natural or semi-formal
language. The absence of a precise mathematical semantics
makes any pretense of achieving formal verification mean-
ingless [11].

2.1 The Chosen Subset of AADL
The chosen subset includes AADL thread and processor

components. AADL thread component is the only com-
ponent with execution semantics in AADL. In the chosen
subset of AADL, an AADL thread can be periodic, aperi-
odic, or sporadic. Periodic thread dispatches are solely de-
termined by the time interval specified through the Period
property value. An aperiodic or sporadic thread dispatch is
triggered non-deterministically. But for sporadic threads, a
minimum interval time between successive dispatches has
to be specified through the Period property value. The
property Priority specifies the execution order when more
than one threads are ready to execute. The range property
Compute Execution Time defines the Best Case Execution
Time (BCET) and Worst Case Execution Time (WCET).
For brevity, we only consider WCET in the paper. AADL
processor component is an abstraction of the runtime envi-
ronment and execution platform, where a scheduler is im-
plicitly included. In this paper, we use the terms sched-
uler and processor interchangeably. The scheduler plays the
role in coordinating all thread executions on one proces-
sor as well as concurrent access to shared resources. Vari-
ous scheduling protocols can be specified according to the
Scheduling Protocol property value. In this paper, we con-
sider a preemptive fixed-priority scheduler.

Definition 1. An AADL-specification A is a pair <Pr, T>
where:

• Pr is a processor, which is a triple <Ident, T Bind,
Sch Protocol>:

– Ident denotes the identifier of the processor, which
must be unique in the range of the specification.

– T Bind denotes a set of threads bound to the pro-
cessor, where T Bind ⊆ T .

– Sch Protocol denotes the Scheduling Protocol prop-
erty. We assume that the value of the property is
”preemptive fixed-priority”.

• T is a set of thread components. Let t range over T.
A thread ti is a pair <Idi, Sch Propi>:

– Idi denotes the identifier of the thread ti which
must be unique in the range of the specification.

– Sch Propi denotes a set of scheduling properties.
More specifically, Sch Propi=<Dispatch Protocoli,
Compute Execution T imei, Compute Deadlinei,
Priorityi, Periodi> of the form Property ::=
Identifier => V alue. We assume that the value
of the Dispatch Protocol can possibly be ”aperi-
odic”, ”sporadic”, and ”periodic”.

3. A BRIEF OVERVIEW OF TASM
TASM [14] was born at MIT, USA, and now the toolset

is being extended at Mälardalen University, Sweden. TASM
is a formal language for the specification of embedded real-
time systems. The TASM language extends the Abstract
State Machine (ASM) [5] to enable the expression of timing
and resource consumption.

Definition 2. A TASM specification is a pair <E, ASM>

where:

• E is the environment, which is a triple <EV, TU, ER>:

– EV denotes Environment Variables, the global
variables that affect and are updated by machine
execution,

– TU denotes the Type Universe, a set of types that
includes real numbers, Integer, Boolean, and user-
defined types,

– ER denotes Environment Resources, a set of named
resources. More specifically, ER={(rn, rs) | rn is
the resource name, and rs is the resource size}.
Examples of resources include memory, power,
and bus bandwidth.

• ASM is the abstract state machine, which is a 4-tuple
< MV, CV, IV, R>:

– MV denotes Monitored Variables, the set of en-
vironment variables that affects the machine exe-
cution,

– CV denotes Controlled Variables, the set of envi-
ronment variables that the machine updates,

– IV denotes Internal Variables, the set of local vari-
ables and they are visible merely inside the ma-
chine,

– R denotes a set of Rules, R={<n,t,RR,r> | n
is the rule name; t specifies the duration of a
rule execution, which can be a single value or a
range value [tmin, tmax] or the keyword next, the
next construct essentially states that time should
elapse until one of the other rules is enabled. Es-
pecially, the lack of a time annotation is assumed
to mean t = 0; RR is the resource consumption
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during the rule execution. Similarly, the omission
of a resource consumption annotation is assumed
to mean zero resource consumption; r is a rule of
the form ”if guard then action”, where guard is
an expression depending on the monitored or in-
ternal variables, and action is a set of updates of
the controlled or internal variables. We can also
use the rule ”else then action” which is enabled
merely when no other rules are enabled.}.

As an extension of ASM, TASM describes system behaviors
as the computing steps of an abstract machine with time
and resource annotations. The basic execution semantics of
a TASMmachine is described as follows: In one step, it reads
the monitored variables, selects a rule of which guard is sat-
isfied, consumes the specified resources, and after waiting
for the duration of the execution, it applies the update set
instantaneously. If more than one rules are enabled at the
same time, it non-deterministically selects one to execute.
In TASM, time progresses in a fixed constant step called a
clock tick which is the minimum time quota. As a specifica-
tion language, TASM supports the concepts of hierarchical
composition, parallelism, communication and synchroniza-
tion. Hierarchical composition is achieved by means of aux-
iliary machines - function machines and sub machines. Par-
allelism is naturally supported, since TASM main machines
are executed in parallel. Communication and synchroniza-
tion between machines can be achieved by communication
channels [13] whose semantics is similar to the concept of
rendezvous in the Ada programming language.

4. FORMAL SEMANTICS FOR THE SUB-
SET OF AADL

In this section, the formal semantics for the chosen subset
of AADL is presented in TASM. Firstly, we present the for-
mal semantics for the AADL thread component, which can
be regarded as two subcomponents - Dispatcher and Thread.
For each sub-component, the formal semantics is described
in terms of the sub-component’s states and a corresponding
TASM main machine. Secondly, we present the formal se-
mantics for the scheduler in the form of its possible states
and a TASM main machine with several Auxiliary Machines
(AM).

4.1 AADL Thread
In AADL, periodic, aperiodic, and sporadic threads have

the same life cycle [4] but different dispatch protocols. There-
fore, we regard the thread component as Dispatcher and
Thread.

4.1.1 Dispatcher
As its name implies, Dispatcher represents the behavior

of a dispatch protocol which can be periodic, aperiodic, or
sporadic according to the Dispatch Protocol property value.

Dispatcher can have two possible states - dispatch (ini-
tial state) and wait. The dispatch state denotes that a dis-
patch of the thread is triggered immediately (if the thread
is periodic) or after a non-deterministic time duration (if
the thread is aperiodic or sporadic). The wait state denotes
that Dispatcher is waiting for the elapse of a specified period
to send the next request. In the Dispatcher model, a state
variable, disState, is used to denote the current state of the
dispatcher. Its initial value is dispatch.

Dispatcher main machine consists of five rules, as shown
in Listing 1. Rule Dispatch changes the dispatcher state
from dispatch to wait and sends a dispatch request through
a global variable disFlag to Thread. We use a variable timer
to trace the elapsed time between dispatches. Rule NonDe-
terministic does nothing, but costs 1 clock tick. When the
modeled thread is aperiodic or sporadic, Rule NonDeter-
ministic and Rule Dispatch are always enabled or disabled
simultaneously. As a reminder, in TASM, if more than one
rules in the same machine are enabled simultaneously, solely
one of them will be non-deterministically selected to execute.
We introduce this inconsistency purposely to simulate the
non-deterministic scenario of dispatching aperiodic and spo-
radic threads. When the modeled thread is periodic, Rule
NonDeterministic is always disabled. Both Rule Waiting
and Rule WaitComplete cost 1 clock tick. They are used to
simulate the wait state of the dispatcher. For a periodic or
sporadic thread’s dispatcher, Rule Waiting is enabled when
the period of the corresponding thread does not elapse. On
the contrary, Rule WaitComplete is enabled when the pe-
riod has elapsed and updates its state to dispatch. For an
aperiodic thread’s dispatcher, the specified period is zero, so
both rules are always disabled. The last rule, Rule Else is
used to keep the machine alive, in case no other rules are
enabled.

4.1.2 Thread
Thread is responsible for modeling the execution seman-

tics of AADL threads once they are dispatched. Within the
AADL context, the complete AADL thread execution model
incorporates complex functional and non-functional behav-
iors. For brevity and simplicity, our model solely focuses
on basic functional behaviors - thread dispatching, thread
scheduling and execution, but ignores mode transition, re-
mote subprogram, data communication and error recovery.
However, these behaviors are subjects for future work.

The possible undergoing thread states can be simplified
into awaiting dispatch (initial state), compute, and complete.
The awaiting dispatch state denotes that a thread is await-
ing a dispatch request. The compute state denotes a thread
is currently computing. The complete state denotes a thread
completes its computation and returns to the awaiting dispatch
state. More detailed, the compute state can be further re-
fined into two states - ready and running. The ready state
denotes that a thread is awaiting the allocation of neces-
sary resources for performing the upcoming execution, such
as memory or CPU-time. The running state denotes that
a thread is currently occupying the CPU and being exe-
cuted. In the Thread model, two hierarchical state variables
are used - thdState and thdCmpState which respectively de-
scribe the current thread state and the current refined com-
pute state. The initial value of thdState is awaiting dispatch.
The initial value of thdCmpState is none which merely de-
notes the thread is not being executed.

The execution semantics of a thread is expressed as a main
machine with six rules, as is shown in Listing 2. Rule Wait-
Dispatch is enabled when Thread is in the awaiting dispatch
state and a dispatch request is received. It changes the state
of Thread from awaiting dispatch to compute, and updates
the thdCmpState variable to be the ready state. Rule Com-
puteReady blocks the Thread machine until a signal through
runThd channel is received from Scheduler that also updates
the Thread machine to the running state. A thread within
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the compute state may be subjected to preemption, where
its time and resource consumption must be stalled. TASM
does not allow a rule execution to be interrupted by any
other rule. In order to model the behavior of preemption,
Rule ComputeRunning and ComputeComplete are defined.
Both Rule ComputeRunning and ComputeComplete cost 1
clock tick. When the thread is in the running state, Rule
ComputeRunning is enabled repeatedly when the amount
of elapsed clock ticks is less than WCET-1. Rule Com-
puteComplete is enabled when the amount of elapsed clock
ticks is equal to WCET-1, and then changes thread state
to the complete state. Rule Complete is used to complete
the current dispatch of the thread. Currently this rule solely
changes the thread state back to the awaiting dispatch state,
but will be used to implement additional actions of data
communication and shared resources in future work. Rule
WaitNextDispatch is used to model the idle time between
dispatch requests.

4.2 Scheduler
A scheduler grants Thread to execute on the processor

based on the specified priority scheme. It ensures that only
one thread is being executed on a particular processor. If
no thread is in the ready state, the scheduler is idle until
at least one thread enters the ready state. A thread will
remain in the running state until it completes execution of
the dispatch or until a thread with higher priority enter-
ing the ready state preempts it. The execution semantics
varies according to its scheduling protocol. In this section,
we present the execution semantics of a preemptive fixed-
priority scheduler.

A scheduler has three possible states - wait thread (initial
state), sche thread, and run thread. The wait thread state
denotes that the scheduler is awaiting until a thread en-
ters the ready state. The sche thread state denotes that the
scheduler selects one thread with the highest priority from
the set of threads in the ready state. The run thread state
denotes the scheduler grants the selected thread to execute.
In the Scheduler model, a state variable designated schState
traces the state of Scheduler.

The Scheduler main machine makes use of five auxiliary
machines, both sub machines and function machines, as is
shown in Table 1. Due to limited space, we do not present
them in detail in this paper. The execution semantics of
a scheduler is modeled as a main machine with five rules,
as shown in Listing 3. Rule WaitThread is enabled when
at least one new thread enters the ready state or if there
is any thread left in the ready state when the processor is
released. Then it updates the scheduler to the sche thread
state. Rule ScheThread is enabled when the scheduler is in
the sche thread state. It selects the thread with the high-
est priority from the set of threads in the ready state. Rule
PreemptThread is enabled if the selected thread has a higher
priority than the currently running thread. And the sub ma-
chine RUNNEXTTHD() is called to execute. On the con-
trary, Rule RunThread is enabled if the running thread has a
higher priority. This rule changes the Scheduler machine to
the wait thread state. Rule Idle is used to keep the machine
alive when no other rules are enabled.

5. TRANSFORMATION TO TASM
Based on the definition of AADL and TASM presented in

Section 2 and Section 3 and the formal semantics presented

AM Type Description

isNewReadyExist Function
return true if a new thread
becomes ready, else false

isCPUFree Function
return true if the CPU is
currently free, else false

isReadyExist Function
return true if there is any
ready thread, else false

scheduleThreads Function
return the highest priority
thread among the threads
in the ready state

Preemptted Function
return true if the running
thread is preemptted

RUNNEXTTHD Sub
suspend the running
thread and execute the
next thread

Table 1: The Auxiliary Machines (AM) Used by the
Scheduler Main Machine

ti =
LET TASM_Dispatcher(i) =
LET Edisp =
LET TUdisp = DisState := {dispatch, wait};

ThdType := {periodic, aperiodic, sporadic};
IN <EVdisp, TUdisp, ERdisp>
AND ASMdisp =
LET Rdisp =
Dispatch{ if disStatei=dispatch then disStatei

:= wait; disFlagi:= dispatched; timer:= 0;}
NonDeterministic{ if disStatei = dispatch and

disProtocoli != periodic then skip;}
Waiting{ if disStatei = wait and timer<(

thdPeriodi-1) then timer := timer +1;}
WaitComplete{ if disStatei=wait and timer=(

thdPeriodi-1) then timer := timer +1;
disStatei := dispatch;}

Else{ t:=next; else then skip;}
IN <MVdisp,CVdisp,IVdisp,Rdisp>
IN <Edisp, ASMdisp>

Listing 1: Transformation Rule of AADL Thread

in Section 4, we define two transformation rules for AADL
thread and processor component. For the sake of the lim-
itation of pages, we solely show the main part of the rules
in Listing 1, 2, 3. The transformation rules are expressed in
the form of the LET-IN construction:

• entity =
LET element1 = body1

AND element2 = body2 ...
IN <element1, element2, ...>
END entity

where the elements between the angle brackets conform to
the formal definition of entity.

6. CASE STUDY
In order to illustrate how AADL models can benefit from

our formal semantics, we present a case study of the verifica-
tion of an adapted version of the follower spacecraft guidance
system (FSGS) example presented in [6].

6.1 Follower Spacecraft Guidance System
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AND TASM_Thread(i) =
LET Ethread =
LET TUthread = DisPatchFlag := {none, WithOutRes,

WithRes}; ThreadState:= {awaiting_dispatch
, compute, complete}; ThreadComputeState :=
{none, ready, running};

AND ERthread = power := [POWER_SIZE]; memory
:= [MEM_SIZE];

IN <EVthread, TUthread, ERthread>
AND ASMthread =
LET Rthread =
WaitDispatch{ if thdStatei=awaiting_dispatch

and disFlagi=dispatched then thdStatei:=
compute; thdCmpStatei:= ready; disFlagi:=
notdispatched; cmpTime:= 0;}

ComputeReady{ if thdStatei=compute and
thdCmpStatei=ready then runThdi?;}

ComputeRunning{ t:= 1; power:=POWER_
CONSUMPTION; memory:=MEM_
CONSUMPTION; if thdStatei=compute and
thdCmpStatei=running and cmpTime<thdWCETi
-1 then cmpTime:=cmpTime+1;}

ComputeComplete{ t:= 1; power:= POWER_
CONSUMPTION; memory:=MEM_
CONSUMPTION; if thdStatei=compute and
thdCmpStatei=running and cmpTime=thdWCETi
-1 then thdStatei:=complete; cmpTime:=
cmpTime+1; thdCmpStatei:=complete;}

Complete{ if thdStatei=complete then thdStatei
:=awaiting_dispatch; thdCmpStatei:=none;}

WaitNextDispatch{ t:= next; else then skip;}
IN <MVthread,CVthread,IVthread,Rthread>
IN <Ethread, ASMthread>
IN TASM_Dispatcher(i) || TASM_Thread(i)
END ti

Listing 2: Transformation Rule of AADL Thread
(cont’d from Listing 1)

Pr =
LET TASM_Processor =
LET Eprocessor =
LET TUprocessor = ScheState := {wait_thread,

sche_thread, run_thread};
IN <EVprocessor, TUprocessor, ERprocessor>
AND ASMprocessor =
LET Rprocessor =
WaitThread{ if scheState = wait_thread and (

isNewReadyExist() or (isCPUFree() and
isReadyExist())) then scheState :=
sche_thread;}

ScheThread{ if scheState = sche_thread then
scheState := run_thread; nextRunThread :=
scheduleThreads();}

PreemptThread{ if scheState = run_thread and
Preemptted() then scheState := wait_thread;
RUNNEXTTHD();}

RunThread{ if scheState = run_thread and !
Preemptted() then scheState := wait_thread;
nextRunThread := none;}

Idle{ t:= next; else then skip;}
IN <MVprocessor,CVprocessor,IVprocessor,Rprocessor>
IN <Eprocessor, ASMprocessor>
IN TASM_Processor
END Pr

Listing 3: Transformation Rule of Scheduler

Thread Period WCET Priority Power Memory
Receiver 100 10 high 20 20
Reader 100 20 middle 30 10
Watcher 100 30 low 50 30

Table 2: Parameters of Threads in FSGS

FSGS consists of three threads. A sporadic thread (Re-
ceiver) receives position data which is sent periodically from
the leader spacecraft, updates its own position data, and
sends the position data to the Reader thread. A Reader
thread reads periodically the position value from the Re-
ceiver thread and stores it in a protected object. A Watcher
thread ”watches and reports” the object to the earth ob-
servation station. This model is a typical sub system of
a distributed system, with a sporadic thread to exchange
data and a set of periodic threads devoted to process data.
We assume that all the threads need resources - power and
memory, which is shown in Table 2.

6.2 TASM model
The Scheduler machine schedules the execution order of

threads based on fixed-priority scheduling protocol. All the
threads are hard real-time threads, that is, a missed deadline
is regarded as a system failure. The model of the periodic
threads Reader and Watcher are respectively expressed by
two main machines (Dispatcher and Thread) with the pa-
rameters listed above. Although a sporadic thread can the-
oretically be triggered at any time after a minimum period,
we assume a maximum period within which the Receiver
thread will be triggered at least once. The maximum period
can be the hyper-period of the periodic threads or any other
reasonable value. This assumption is reasonable, because
as long as the follower spacecraft does not deviate from the
leader spacecraft, the FSGS will receive the position data
within a maximum period.

6.3 Verification and Validation

6.3.1 Resource Consumption
We use the TASM toolset to analyze resource consump-

tion of the FSGS system. As depicted in Figure 1, the graph
shows the aggregate resource consumption in the first period
of the FSGS system for each resource - power (upper) and
memory (lower), versus the horizontal time axis. Three dis-
tinctive high levels represent the resource consumption of
the corresponding threads. Because the FSGS system does
not contain any parallelism consumption of resources, the
minimum and maximum amounts of resources consumed will
correspond to the minimum and maximum amounts con-
tained in an individual thread.

6.3.2 Timing Properties
The TASM machines can easily be translated into Timed

Automata through the transformation rules defined in [12].
The transformation enables the use of the Uppaal model
checker to verify the schedulability of the FSGS system.
In addition, deadlock freedom is an essential property that
should be satisfied, which also is a prerequisite for schedula-
bility analysis. Table 3 shows the queries of the properties
and the corresponding results.

7. CONCLUSION AND FUTURE WORK
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Figure 1: Resource Consumption (resources on the
Y-axes and time on the X-axes)

Property Query Result
Deadlock Freedom A[] not deadlock Satisfied

Schedulability

A[] not
Reader.MissDeadline
or Watcher.MissDeadline
or Receiver.MissDeadlin

Satisfied

Table 3: Deadlock Freedom and Schedulability
Analysis for FSGS

We present an approach to provide formal resource con-
sumption and schedulability analysis for AADL models of a
local subsystem of a DRE system. The approach is to trans-
late the execution semantics of AADL components into rule
machines in the TASM language. Periodic, aperiodic and
sporadic threads and a preemptive fixed-priority scheduler
are covered. We purposely introduce inconsistent rules into
the translated TASM machine in order to model the non-
deterministic aspects. A small case study is conducted to
show how to perform resource consumption and schedula-
bility analysis. Resource consumption analysis is enabled
by using the TASM toolset. Schedulability analysis of the
translated TASMmodel is carried out by mapping the TASM
model into timed automata.

Future work on this approach will cover a larger subset
of AADL components, such as, additional components, the
Behavioral Annex, mode change, data communication, the
Error Annex, etc. Additional scheduling protocols will be
incorporated for analysis and evaluation.
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       
       
     
  
      

      
         
        

       

        
        

        

        
       
       
   
       
       

         

       
         


        


      
        

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          
          
           

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
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       


          
     

        
        
        
 


 
         
        
         
   

         
      
  
         
        

       
         

   
     
      


   
      

        

         
       

        


     
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
        


       
        
       

   
       

        
    
        
        
       
       



       
        

      
         

        


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 
         
      
       
      



  
       
      

       

 

       

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
      
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       
        

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        
       
      
     
      
      
       
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       

      
      





     
   

        



         

        

       
     
    
         
         


       
       
      

         
     


      
      


 
  
         
   
   
     
         

        

      
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
         
         
    

       

          
    
      


    
     
       
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
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
        

        


          


       
        


  
        
      
     
    
           
       
          

          
       
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      
        

           
      

 
       

       
   
          


        
     
         


        


 
        
      
  
       
   

     

       
     
      


         



       
        
      
      


 



 
 




 


 


 
 




 



 



 




 
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ABSTRACT

The AUTomotive Open System ARchitecture (AUTOSAR)
is the emerging standard for the development of real-time
embedded automotive systems. Several tools exist that sup-
port the development as well as the analysis of AUTOSAR
systems. Simulation environments use models or generated
source code for testing and scenario-based simulation pur-
poses. Unfortunately, there is a lack of methods and tools
supporting the early timing analysis of AUTOSAR systems.
In this work, we show how to automatically transform a
given AUTOSAR architecture to an interconnected set of
timed automata that represents the state-based timing be-
havior of the system. The derived timed automata models
are used for analyzing the timing behavior in an early de-
velopment stage. Furthermore, we show how to analyze the
resulting timing behavior supporting abstract and incom-
plete AUTOSAR systems using the tool UPPAAL.

1. INTRODUCTION

AUTOSAR is the upcoming standard supporting a dis-
tributed development process of complex embedded auto-
motive real-time systems. Several tools support the speci-
fication as well as analysis of AUTOSAR conform systems.
In the embedded domain, testing and simulation play an im-
portant role for system verification [4]. Analysis tools like
SystemDesk1 provide simulation capabilities for validating
the functional behavior of an AUTOSAR conform system.
Beneath the functional behavior, non-functional properties
as in the case of timing are crucial for automotive embed-
ded systems. Unfortunately, there is a lack of methods and
tools supporting the analysis of non-functional properties as
timing. In this work, we show how to automatically derive
an interconnected set of timed automata based on a given
AUTOSAR architecture. The automatic derivation includes
the most relevant aspects that allow us to apply a timing
analysis using elaborated tools as UPPAAL (cf. [3]). Fur-
thermore, abstraction is supported in such a manner that

1Provided by dSPACE (see www.dspace.com).
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also a partially defined system can be analyzed, e.g., for
deciding if local deadlines respectively periods of operating
system tasks are met. Thus, the distributed development of
such architectures is supported allowing an early analysis of
the partially defined AUTOSAR architecture. The paper is
organized as follows: We give a brief introduction into the
AUTOSAR architecture in Sec. 2 as well as into timed au-
tomata in Sec. 3. In Sec. 4, we schematically describe how
to automatically derive a set of timed automata based on a
given AUTOSAR description. In Sec. 5, we discuss an appli-
cation example and show how to use the derived model for
realizing an analysis also in case of an incomplete system.
We conclude the paper with a discussion about related work
in Sec. 6.

2. AUTOSAR

The AUTomotive Open System ARchitecture is a frame-
work for the development of real-time embedded automotive
systems. AUTOSAR provides a layered architecture con-
sisting of the software layer (SW), the runtime environment
(RTE), the basic software layer (BSW) and the hardware
layer (HW) as shown on the left of Fig. 1. At the top layer,
software components (SWCs) ( 1� and 2�) are the building
blocks for realizing the behavior of the overall developed
application. Communication between individual SWCs is
realized via ports 2� and so-called assembly connectors 3�.
While ports are part of the SW layer, communication be-
tween ports via connectors is realized by the RTE. Addi-
tionally, the component-based development methodology in
AUTOSAR at the top layer supports compositions, which
group an individual set of SWCs together. Within a compo-
sition, delegation connectors transfer the data of the internal
ports of SWCs to external ports of the composition.2 Be-
cause compositions are a set of grouped SWCs and we can
derive TA from SWCs as well as realize the assembly con-
nectors, we focus on SWCs and do not discuss compositions
in more detail in the reminder of this work. The behav-
ior of a SWC is realized by so-called Runnables 1� that are
associated with an implementation. Such an implementa-
tion can exist in form of C functions. Runnables are able
to interact with ports 2� of the SWC by reading or writing
data from resp. to it. The RTE handles the communication
between different constituents of the application layer, e.g.,
different SWCs, and between the application layer and the
BSW layer, e.g., for accessing HW.3

2See: Specification of the Virtual Functional Bus - V. 1.2.0.
3See: General Requirements on BSW Modules - V. 3.2.0.
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Figure 1: The AUTOSAR layered architecture.

Below the RTE the BSW layer provides services, e.g., in
form of drivers for accessing the HW as well as the operating
system (OS) functionalities.4 The OS needs a description
4� of the execution order of the Runnables mapped on a
task 5�. In the remainder of this work, such a description
of the execution order is called the Task-Runnable mapping
(TRM). At runtime, an OS scheduler 6�5 handles the execu-
tion of each task according to its configuration, e.g., in form
of the defined period and priority while using the resources
of the HW 7�. The TRM further defines, in which cases the
mapped Runnables are triggered. As an example, it is pos-
sible to execute an OS task with a period of 100 ms. The
TRM allows to define that one of the mapped Runnables
has to be triggered only each 200 ms or in other words each
second period of the task.

In the reminder of this work, we show how to automati-
cally derive from a given AUTOSAR architecture an inter-
connected set of timed automata that allows us to analyze
the resulting timing behavior including the previously men-
tioned elements. We show how the derived automata reflect
the control flow as well as the communication. The control
flow exists in form of the dependencies between the scheduler
using the resources of the HW, OS tasks as well as Runnables
like depicted by the dashed lines on the left of Fig. 1. The
communication exists in case of sent and received signals
delegated between different SWCs via the RTE as well as
signals that are read or written by Runnables from and to
ports like depicted by the solid lines on the left of Fig. 1. Fur-
thermore, the figure schematically shows the derived timed
automata on the right for each element.

3. UPPAAL TIMED AUTOMATA

In the following, we recall Alur-Dill style timed automata
(TA) like they are used in the tool UPPAAL. A schematic
description of an UPPAAL TA is depicted in Fig. 2. Such a
TA A can be understood as a 6 tuple A Σ,L,L0, X, I, E
where Σ represents the set of signals, respectively channels
(e.g., signal {t}Run in Fig. 2), L represents the set of lo-
cations (e.g., ready), L0 the initial location, I a set of in-
variants assigned to locations (e.g., x p assigned to
location ready with p N ) and E the set of edges (e.g.,
the edge e). An edge e can contain signals that need to
be sent (!) or received (?) to take an edge, guards (e.g.,

4See: Specification of Operating System - V. 5.0.0.
5See: Specification of OS, 2011, V. 5.0.0

Figure 2: Schematic description of a UPPAAL TA real-

izing the behavior of an OS task.

x p for edge e) that need to be fulfilled to enable the
edge and variable assignments as in the case of the clock
reset x : 0 of the edge e. Thus, the edge e leading to the
initial location can be taken if the guard x p is ful-
filled, resetting the clock x to 0. In such a manner, periodic
behavior, e.g., of an OS task can be modeled using TA. If
a signal is included in an edge, another TA is required to
send respectively receive the signal to take the edge. Fur-
thermore, in the used model of TA urgent and committed

locations are used. If a TA is in an urgent location � time
is not allowed to pass. A committed location c� (e.g., Fig. 2
location error) is a strengthened form of urgent locations,
where time is not allowed to pass. When being in a com-
mitted location only edges are enabled leaving a committed
location. A state of a TA results from the current location
in combination with the assignment of variables (clocks and
discrete state information). In this work, we do not focus on
the exact semantics of the formal model of TA. For a more
detailed description as well as for more information about
UPPAAL see [2, 3].

4. TRANSFORMATION

In this section, we show how the previously introduced
constituent parts of the AUTOSAR architecture are real-
ized by different TA pattern, resp. templates. These tem-
plates are used to describe the resulting structure of each
TA, representing an individual constituent part of a given
AUTOSAR architecture. The goal of each template is to
represent the most abstract behavior of each constituent
part. The real TA are later on instantiated by a java pro-
gram according to these templates.

4.1 Components

At first, we start with SWCs consisting of the parts as
schematically depicted on the top left of Fig. 1. We use tem-
plates for the representation of Runnables 1� respectively
their implementation, ports 2� as well as the Task-Runnable
mapping 4�.6

Runnables/Implementations

For each Runnable, we derive one automaton including the
abstract representation of the behavior7 like best-case and
worst-case execution times (if available) as well as the inter-
action with the ports (reading and writing data elements).

6Normally 4� is part of the RTE, but for a better under-
standing this part is discussed in the context of SWCs.
7At this point, we hide the implementation details to protect
intellectual properties.
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requests[j]:=requests[j]+1
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{r}Finished!
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x:=0
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requests[i]>={min[i]} &&
requests[j]>={min[j]} &&
..

{s}{p[i]}InRead!

{s}{p[j]}InWrite!

active
passive

Figure 3: Schematic description of an UPPAAL TA re-

alizing the behavior of a Runnable implementation 1�.

Furthermore, a second TA is derived that is responsible for
connecting the Runnable instance with the task, on which
it is mapped 4�. Because implementations of Runnables
can vary in a wide range, this variability is also reflected in
the template used for the Runnable behavior respectively its
implementation. Fig. 3 shows the template of a Runnable
r contained in the SWC identified by its instance name s.
As a convention, all braces that are surrounding, e.g.,
instance names, are later on replaced with the concrete in-
stance values. E.g, s is later on replaces by the name of
the SWC. In its basic form, the template automaton contains
two locations. The initial location (passive) is associated
with the state, in which the Runnable is not executed and
the second location (active) is associated with the state, in
which it is executed. Transitions between the passive and
active location are only possible by receiving an activation
signal via the channel {r}Start in the initial location re-
spectively by sending a completion signal via the channel
{r}Finished after execution (sent, resp. received from the
TA shown in Fig. 4). In the location active, the Runnable
can read and write on variables, e.g., internal ones or vari-
ables associated with ports of the surrounding SWC 3�. If
no information about the state-based behavior of the imple-
mentation is given, read and write accesses to data can occur
randomly in the active location. The ports of the SWC are
accessed by sending or receiving the appropriate signals. In-
dividual ports are identified via the SWC instance name s

in combination with the array p[], containing all port names
of the SWCs. If available, the minimal (min[]) an maximal
(max[]) number of sent and received signals, allowed to be
sent during one execution of the Runnable, can be specified
for each individual port.8 In the passive location, data ac-
cess can obviously not occur due to the fact that writing
or reading variable values requires the resource of the CPU,
which is in the initial location not allocated for the Runnable
(the Runnable is not executed). Furthermore, the template
allows specifying best-case (BCET) and worst-case (WCET)
execution times. Values for BCET and WCET can poten-
tially be derived from different sources, e.g., using WCET
analyzers, measured values known from previous projects or
estimated values. In the template, the transition from loca-
tion active to passive can only take place in the case the
clock x has a value between BCET and WCET. The signal
{r}Start needs to be sent to execute the Runnable. Execut-
ing a Runnable is realized by a task but in the AUTOSAR

8For each signal an individual edge is created in the resulting
TA based on the description of the template.
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Figure 4: Schematic description of a UPPAAL TA real-

izing the Task-Runnable mapping 4�.

standard, tasks do not directly trigger Runnables. Instead,
the TRM 4� is responsible for sending this signal. The TRM
is part of the RTE configuration and realizes the appropri-
ate execution of Runnables in the context of an OS task. It
defines the execution order as well as the conditions, under
which each mapped Runnable is executed. An excerpt of
the TA template realizing the TRM is shown in Fig. 4. If a
task t is executed by the scheduler a signal {t}Run is sent
from the task (see template shown in Fig. 2) to the TRM. In
the context of the TRM TA, the appropriate Runnables are
triggered in a defined order, e.g., starting with the Runnable
mapped on the associated SWC with name r, listening on
the signal {r}Start. Depending on the logic specified by
the mapping, different Runnables are triggered, allowing re-
alizing alternating execution orders of Runnables or realizing
the conditional execution of Runnables. Due to space limita-
tions, we only discuss one example of a mechanism provided
by the TRM in case of AUTOSAR timing events. Timing
events in AUTOSAR can be used to specify the period of a
Runnable. It can be a multiple of the period from the corre-
sponding task. Consider an OS task t with a period p. The
TRM can be configured such that a Runnable is triggered
only each m executions of the task t. Thus, the Runnable
is executed with a period equal to p m. For realizing the
appropriate behavior of timing events using a TA, for each
Runnable r, a counter variable {r}trigger is created inside
the TRM. After m executions of the task, the Runnable
will be triggered and the counter is reset. Fig. 4 shows a
schematic description of the TRM realizing the behavior of
timing events. If no timing event exists for a Runnable r,
the associated variable m is initialized with the value 0.
According to the given configuration of the AUTOSAR ar-
chitecture, a construct as depicted in Fig. 4 is generated
for every Runnable and inserted at the appropriate posi-
tion instead of the three dots currently shown. The signal
{t}Processed is sent by the TA realizing the TRM to the
OS task (see Fig. 2) after all Runnables were processed, in-
dicating the completion of the Runnables mapped on the
task.

Ports

The next constituent part, required for representing the state-
based timing behavior of a SWC, is the realization of SWC
ports 3�. In AUTOSAR, ports provide access to SWCs re-
spectively allow SWCs to access other connected compo-
nents. Because variables of ports are always written and
read within the execution context of a Runnable respectively
the associated implementation, the ports itself do not con-
sume time when being read or written and simply forward
signals. So in our model, the time for reading or writing
from or to a port is added to the execution context of the
Runnables. As a result, ports are modeled like shown in
Fig. 5, where for each port p of a SWC s a TA is created.
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Figure 5: Schematic description of a UPPAAL TA real-

izing the behavior of the ports of a SWC.

!"#$"%#$"&'($)*+$,-"./-01$-/21
!3#$3%#$3&'($456.$-/21

7(89

7:8!,'

788!,'

!"'!3';<.*6,.1=

,(8,>%

!"%'!3%';<.?1/@A

,(8,B%

,:!2/7CD<EE'

,F9

!"&'!3&';<.*6,.1A

!2/7CD<EE'($G/7H$D<EE16$",I1
!,'($J-.16K/L

Figure 6: Schematic description realizing the communi-

cation between SWCs in form of a connector.

The TA on the left of Fig. 5 shows the template realizing an
output port and the TA on the right realizes an input port.

4.2 Runtime Environment

In the following, we consider the communication between
different SWCs. The RTE realizes communication between
SWCs in AUTOSAR 3�. Connectors link SWCs and the
RTE is responsible for realizing this communication link.
Again, as in the case of ports, connectors do no consume
time. The time for delegating signals between SWCs is al-
ways added to the execution time of Runnables. On the
left of Fig. 6, the behavior of a connector is schematically
depicted. Within this template connected ports of differ-
ent SWCs simply forward signals. Specifying the mapped
SWCs, the parameter s1, s2, p1, p2 need to be defined
such that s1 is the identifier of the receiving SWC, s2 is
the identifier of the sending SWC, p1 is the identifier of the
receiving SWC port and p2 is the identifier of the sending
SWC port.

Furthermore, AUTOSAR supports different communica-
tion mechanism as in the case of the last value best value se-
mantic, where not consumed signals are simple overwritten.
Alternatively, buffered communication can be used, where
signals are stored and a buffer overflow or an empty buffer
can lead to a failure. The template shown in Fig. 6 realizes
such a behavior by only allowing sending a signal via a con-
nector if not already max-buff signals are stored. Reading
a signal from a connector is only possible if the buffer is
not empty. For this purpose the integer variable i, appro-
priate guards as well as updates are added to the edges of
the template. In case of a not buffered communication these
variables, guards and updates are simply removed from the
template.9

4.3 Operating System

In the context of the BSW, we focus on two relevant OS
parts, which have major impact on the resulting timing be-
havior of the specified AUTOSAR systems. Subsequently,
we show how to model templates for the OS tasks and the
OS scheduler.

9In AUTOSAR further communication mechanisms are sup-
ported not considered here due to space limitations.

Figure 7: Schematic descrip-

tion of a UPPAAL TA repre-

senting the state of a task.

Figure 8: Schematic

description of a UP-

PAAL TA realizing the

behavior of the CPU.

OS Tasks

The task template shown in Fig. 2 represents an OS task
with name t. When being in the initial urgent location the
signal {t}Ready is sent without allowing time to pass to
indicate that the task is ready to be executed or in other
words in the ready state. The current state of each task is
stored in an additional TA allowing keeping the task tem-
plate more compact by using two templates instead of one.
The template that receives the signal {t}Ready and stores
the state (not ready or ready

10) is shown in Fig. 7. The
scheduler is able to check if a task t is currently in the state
ready by sending the signal {t}isReady to the TA storing
this information about task t (see Fig. 7). After the task
has sent the signal {t}Ready, the task template changes
to the successor location, where it is allowed to stay for at
most the time till its period p, measured by the clock x, is
expired. If the value of the clock x becomes larger than p,
the task switches to a location indicating that the task has
not been executed before its period. In the case task t is
in location ready, the scheduler can activate this task by
sending the signal {t}Scheduled. If this signal is received
from the scheduler by the task template, the task changes to
the location running without allowing time to pass while
sending the signal {t}Run to the TA realizing the TRM like
depicted in Fig. 4. The TRM is responding with the signal
{t}Processed if all Runnables have been executed. If this
signal has not arrived before the period of the task is over,
again, the task template switches to a location that indicates
an error. After signal {t}Processed has been sent, the sig-
nal {e}Finished is sent to the CPU (see Sec. 4.4) without
allowing time to pass. Afterwards, the CPU activates the
scheduler, which chooses the next task to execute. The task
template takes a transition back to the initial location in the
case its period is over, resetting the clock x to the value 0.

Scheduler

The template of the scheduler (see Fig. 9) implements a rate
monotonic scheduler (for more information about rate mono-
tonic scheduling cf. [5]).11 The scheduler is triggered via the
signal {e}SchedulerRun sent by the CPU e on which it is
executed. By receiving the signal {e}SchedulerRun, the
scheduler changes to the first successor location trying to ac-
tivate a task via synchronizing with the signal {t[0]}isReady,
resp. {t[0]}isNotReady in case the task is not ready.
These signals are sent by the appropriate TA representing

10Because we only consider rate monotonic scheduling with
non preemptive tasks, these two states of a task are suffi-
cient.

11For more information about stopwatches (supported by
UPPAAL) and preemptive scheduling see [1].
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Figure 9: Schematic description of a UPPAAL TA real-

izing the behavior of the scheduler.

the state of each task (see Fig. 7). The array {t[i]} con-
tains all tasks ordered by their priority, e.g., containing at
the index i 0 the task with the highest priority. Accord-
ingly, tasks with a higher priority are activated first, if they
are in the state ready (cf. Fig. 7). After sending the sig-
nal {t[i]}Scheduled to this task (see Fig. 2), the scheduler
sends the signal {e}TaskAssigned to the template realiz-
ing the resource of the CPU (see Fig. 8), indicating that the
CPU now is allocated by the task. Afterwards, the scheduler
switches back to the initial location. If no task contained in
t[] is ready the TA realizing the scheduler enters the loca-
tion on the left of Fig. 9. In this location the scheduler is
waiting for one time unit (assuming that one time unit is
smaller or equal to the smallest tick of the OS and thus no
task becomes ready before one time unit) before checking
the tasks for readiness again.

4.4 CPU

The HW is reflected in form of the CPU 7�. We only con-
sider HW containing a single core. The template realizing
the behavior of the CPU is shown in Fig. 8. The CPU has
three different locations, the initial one, where the CPU is
not occupied and being in some idle state, the second, where
the scheduler is running and the third, where a task is ex-
ecuted. When being in the initial location the scheduler is
triggered via sending the signal {e}SchedulerRun. When
the template of the ECU is in the initial location, this signal
is sent without allowing time to pass (the initial location is
an urgent location). When being in the second location and
the scheduler activates a task, signal {e}TaskAssigned is
sent from the scheduler to the ECU. If a running task sends
the signal {e}Finished to the CPU, the CPU template en-
ters the initial location, triggering the scheduler again for
choosing the next task to activate.

5. ANALYSIS

As an evaluation example, Figure 10 shows the compo-
sition of the three SWCs FuelSensor, FuelController and
EngineModel realizing the fuel rate control of a combustion
engine.12 SWC EngineModel represents relevant behavior of
the engine, required for validating the overall functionality.
It receives the desired fuel rate from component FuelsysCon-
troller and sends raw values to the component FuelSen-

sor. SWC EngineModel contains a single Runnable Engine,

12The AUTOSAR example is derived from an existing
demo application shipped with the tool SystemDesk (see
http://www.dspace.com/systemdesk).

mapped to a task TaskEngine that is executed with a period
of 5 ms. FuelSensor is responsible for evaluating and pre-
processing raw values from the engine. It contains Runnable
DetectSensorFailures, responsible for checking raw input val-
ues (if they are out of range), and Runnable SensorCorrec-

tion, responsible for deriving roughly corrected values, if re-
quired. Both Runnables are mapped onto the single task
TaskFuelSensor, executed with a period of 10 ms. SWC
FuelController is responsible for calculating the desired fuel-
rate for the engine base on the corrected sensor values. SWC
FuelController consists of the two Runnables AirFlowCalcu-
lation and FuelRateCalculation, both mapped on task Task-

FuelConroller, which is also executed with a period of 10 ms.

Figure 10: Application example

- Engine Control

The resulting sys-
tem is trans-
formed to a set
of TA according
to the templates
previously described.
We applied model
checking using
UPPAAL by search-
ing for dead-
locks. Search-
ing deadlocks requires exploring the full reachable state-
space and as a result is a valuable test for investigating the
complexity of the system. Table 1 shows the number of TA
(#TA) contained in the derived system as well as the re-
quired verification time and explored states (according to the
UPPAAL console tool). For the evaluation example no dead-
lock was discovered and the complexity seems to be rather
small. We also applied the overall procedure to the original
version of the application example shipped with professional
tool SystemDesk, which contains three more Runnables as
well as an additional port between SWCs FuelSensor and
FuelController. As a third example we used a more complex
application of a turn-light control, also provided by the tool
SystemDesk. This example consists of 5 tasks, 5 SWCs and
8 Runnables. In the last example a deadlock occurs, due to
the fact that a period of a task is missed (see Sec. 5.2 for
checking missed periods). The result is shown in Table 1.
It can be seen that the complexity is moderate. As future
work more complex examples need to be evaluated to gain
more significant results.

Table 1: Application name, contained number of TA

and verification results (required time (seconds) and

space (states)).

System #TA Time/States
Fuel-Control 27 0.21/3988
Fuel-Control (original) 31 0.25/4149
Turn-Light 45 0.8/7146

5.1 Abstract and Incomplete Behavior

When developing an AUTOSAR conform system there is
often the situation that not all relevant system parts are
available (e.g., still in development or because stakeholder
are not willing to provide detailed information). As a conse-
quence, often, only an incomplete system is available. When
analyzing such an incomplete system via a set of derived
TA, the resulting observable timing behavior may be dif-
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Figure 11: Schematic description of a UPPAAL TA re-

alizing a task simulating a part of the remaining system.

ferent from the timing behavior of the later system. For
example, other high priority tasks, which are not available
or which are not considered till the current development
stage, can potentially lead to significant differences for the
timing behavior. Fig. 11 depicts an OS task with period p

as well as BCET and WCET execution times. Such tasks
can be used to simulate the resource consumption of the
CPU. As in the task template in Fig. 2, if the task period
is missed, an error location will be reached. The TA tem-
plate in Fig. 11 contains the same states as the task template
without the two urgent locations (without synchronization
with the TRM). Therefore, we support the analysis of ab-
stract and incomplete system descriptions at the level of the
OS. An open point is how to support unconnected ports of
SWCs. Especially, buffered communication of unconnected
ports leads in the absence of signals to empty buffers. The
right TA template in Fig. 6 sends signals to an unconnected
port. It is a simplified version of the left TA in Fig. 6 as
described in Sec. 4.2. The template on the right allows to
define a period with the signals {s}{p}OutWrite, which
are sent to the open port of a SWC s. The period is de-
fined by the used guard of the edge in combination with the
invariant. As a result, each i time units a signal is sent.
Potentially, more elaborated templates can be used defining
upper and lower bound or timer intervals, in which signals
are sent.

5.2 Checking Properties

Properties are another open point that can be analyzed
using the derived TA model. An example of such a prop-
erty is a given period of OS tasks, which must be checked
if it always holds. For this purpose, the OS task template
(Fig. 2) includes an outgoing edge of the locations running
and ready that lead to an error location. Therefore, we
cover both cases, where we reach an error state. First, the
period of the task has passed before the task is triggered or
second, the execution of the mapped Runnables has finished
to late. In UPPAAL, state formulas can be used to query
the reachability of error states and checked if certain prop-
erties hold. Potentially, other error locations can be added
depending on the properties that need to be analyzed.

We have implemented a Java prototype, which generates
the UPPAAL TA according to the above described templates
from an AUTOSAR conform XML description. Further-
more, we support additional AUTOSAR events and inter-
ruptible OS tasks.13

6. CONCLUSION AND RELATED WORK

In this work, we have shown how to automatically trans-
form a given AUTOSAR architecture to the formal model of

13These additional constructs are not discussed in this work
due to space limitations.

TA. With the set of TA, we apply simulation and verification
analysis techniques. Partial information about the later im-
plementation (BCET and WCET) are sufficient for an early
timing analysis. Furthermore, the introduced approach sup-
ports the analysis of the timing behavior of an incomplete
AUTOSAR architecture. The approach in [9] uses the Sym-
TA/S tool to apply a real-time analysis of an AUTOSAR
architecture. In this approach, the overall system needs to
exist. Therefore, the considered parts of the system need to
be defined or abstracted for achieving gray-box models for
the blanked parts. However, how to achieve gray-box mod-
els is not described. In contrast our approach allows starting
with a fraction of a system that is not already fully speci-
fied. Instead of deriving abstract descriptions based on more
concrete ones, the system parts can be partially defined and
afterwards refined. In [8], they use SystemC (cf. [6]) for the
behavior specification of an AUTOSAR architecture reflect-
ing timing properties. In contrast to this work, the SystemC
model needs to be defined manually what requires significant
additional effort. The approach in [7] automatically derives
a TA model based on a given SystemC description. Again,
it requires the complete SystemC models, which must be
specified first. In our approach, we only use artifacts, in
form of the given AUTOSAR architecture description that
need to be created in any case when building an AUTOSAR
conform system.
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