
UML/MARTE methodology for high-level system
estimation and optimal synthesis

Héctor Posadas, Pablo Peñil, Alejandro Nicolás, Eugenio Villar1

Microelectronics Engineering Group, Universidad de Cantabria,
39005-Santander, SPAIN

{posadash, pablop, nicolasa, villar}@teisa.unican.es

Abstract. Design of embedded systems is facing the challenge of their growing
complexity and strict performance requirements. Model-driven design solutions
are very common in this context, where the UML/MARTE profile is a well-
known solution for real-time, embedded system modeling. During the design
process, several specification alternatives can be considered; specifically, the
HW/SW platform, concurrent application structure, application allocation into
HW/SW platform resources, etc. The exploration of these design alternatives
enables a set of performance estimations to be obtained in order to choose the
optimal specification, facilitating system implementation and minimizing de-
signer effort. The paper proposes an UML/MARTE methodology the enables
automatic estimation of the system to be implemented. Once the optimal system
specification has been defined, the proposed UML/MARTE methodology en-
ables the final system to be implemented through an automatic synthesis proc-
ess.

1 Introduction

The growing SW complexity of current embedded systems has led designers to in-
crease the abstraction level of the first stages of the design process. Designing at
higher levels of abstraction provides an effective way to deal with the complexity of
large systems. The effects of creating different execution flows and deciding on dif-
ferent HW resource allocations have to be evaluated early in the design process. Thus,
system-modeling methodologies and implementation flows have to be flexible enough
to enable optimizing performance by evaluating multiple design decisions with mini-
mal designer effort.

In this context, model-driven design methodologies based on UML are commonly
adopted to handle the early design of embedded systems [1,2]. The models enable
easy and fast description of the entire system, which is then used as input for the steps
of code generation and integration [3]. However, pure UML usually lacks the seman-
tics required to adequately model all the characteristics of embedded systems. As a
consequence, these models are commonly developed following different profiles

1 This work has been founded by the PHARAON FP7-288307 and the Spanish
TEC2011-28666-C04-02 MCI projects.

which add additional semantics to the original basic UML components. Among these
profiles, MARTE is gaining increasing interest for the development of real-time, em-
bedded systems.

Taking MARTE-based models as input, several synthesis approaches have been
proposed. Gaspard2 [4] is a design environment for data-intensive applications which
enables MARTE description of the application and the hardware platform, generating
an executable TLM SystemC platform at the timed programmers view (PVT) level. In
[5] a design flow based on high-level languages (SysML, MARTE, SystemC, etc)
enables the generation of the deterministic multi-threaded code for parallel implemen-
tations. In [6], a component-based modeling methodology based on UML/MARTE
and explicitly designed for supporting DSE is presented. In 0[7] a semi-automatic
solution for generation of HW/SW infrastructure from UML models is presented.

However, all these solutions are oriented to generating completely fixed models,
especially in their concurrent structure, which limits their applicability when the sys-
tem must fulfill different constraints. In that context, design space exploration of con-
currency and allocation must be considered in order to find the solutions accomplish-
ing all the requirements. In this way, the Zeligsoft infrastructure [3] supports the gen-
eration of codes for different resource allocations, but without providing simulation
services that enable system constraints to be considered early in the design process.
Other solutions [8,9] enable different system-level simulations, but with limited explo-
ration capabilities. However they do not provide enough capability to explore the
optimal system’s concurrent architecture

To solve this problem, this paper presents a methodology to help designers to ex-
plore and automatically implement different design system concurrency architecture
alternatives in the POSIX domain. The approach enables the optimization of the con-
current structure in the UML/MARTE model by easily modifying the communication
semantics and interfaces used as communication mechanisms. Using this infrastruc-
ture, the models are automatically implemented, generating all the files required to
simulate the architectures in a fast native co-simulation tool. Then, the designer can
easily modify the model based on the performance evaluations resulting from the
modifications proposed.

Fig. 1. Original sequential architecture of the MPEG4 application used as an ex-
ample and later concurrent architectures evaluated modifying the communication
semantics.

These model modifications basically focus on concurrent SW architecture and re-
source allocation. It is possible to modify the communication mechanisms among
application components to force them to be sequential, concurrent, to create multiples
copies of a component, etc. (Figure 1). Then, the communications are automatically
implemented and the result evaluated using the synthesis tool developed. Thus, at the
end of the exploration process, optimized synthesized codes are automatically gener-
ated for direct integration in the physical platform.

2 UML/MARTE design flow

The exploration process that can be performed by the proposed infrastructure is
based on a five-step flow (Figure 2). First, the system is modeled following the pro-
posed UML/MARTE modeling methodology, providing the C/C++ files containing
the components functionality. Then, the model is automatically transformed into an
executable code and, the fast, native simulation tool SCoPE [10] is called, in order to
obtain performed metrics characterizing the UML model. Next, the performance met-
rics are analyzed by the user, obtaining conclusions about which changes in the model
channels can optimize the system.

Fig 2. Proposed UML/MARTE-based optimization flow

When the system obtained fulfills the requirements, a synthesis tool is called. The
synthesis tool analyzes the information of the UML model and generates all the ele-
ments required to create the executable SW to be mapped to the physical platform,
including communication wrappers, main files, etc.

To support this flow, the UML/MARTE methodology proposed enables these
changes to be performed by focusing on the deep modeling of communication chan-
nels as a way of enabling the modification and exploration of the application’s concur-
rent architecture. This exploration will enable an optimal use of the HW platform
resources, taking advantage of potential parallelism.

2.1 UML/MARTE Meta-modeling

The UML/MARTE system modeling methodology defined to enable the explora-
tion and synthesis flow is a component-oriented one, following the Model Driven
Architecture (MDA) principles in the development of HW/SW embedded systems.
The application is divided into functional components that are connected through
communication media, and mapped to the processing elements of the HW platform.

The SW components provide and require functions that are grouped in interfaces,
using the MARTE modeling facilities. Additionally, new communication semantics
have been added as a way to connect the provided and required interfaces of the func-
tional components, considering different behaviors. These semantics are captured in
channel models, providing a powerful, flexible and easy-to-use way to define and
explore the system’s concurrent architecture. Specific information about the new
channel semantics can be found in [11].

At the same time, the modeling methodology is based on the idea of the separation
of concerns. This separation is achieved by providing distinct system views to the
designer; each one for a relevant aspect: data model, concurrency structure, communi-
cation mechanism, HW platform, SW functionality, etc.

3 Generation process

Once the model is properly created, the generation processes required to perform
the exploration flow and the final synthesis can start. To do so, all the different codes
required to perform the simulation and the final synthesis must be generated from the
information in the UML model, as described in figure 3. Since the native co-
simulation tool used in the flow (SCoPE) and the target domain supported (Linux) are
both based on the POSIX API, the generated C files used to integrate all the compo-
nents are valid for both steps of the flow, simplifying the process.

Fig. 3. Flow implemented to generate the files required for simulation and final
implementation in the physical platform.

First, some generators developed in Acceleo and integrated in Eclipse analyze the
UML/MARTE model, translating all the information into XML files and generating
the Makefiles required during the compilation process. These files are:

• DataModelFile.xml, containing the specification of data types used in the model.
• ApplicationFunctionalityAndApplicationStructure.xml, describing external ports

and internal characteristics of the components, such as their associated C/C++ files or
the number of internal threads.

• Communication.xml, describing the communication mechanisms that intercon-
nect the system components and their associated semantic characteristics.

• InterfaceFile.xml, describing the interfaces used by the application components.
• MemoryAllocation.xml, specifying the application component mapping to mem-

ory partitions
• HWPlatform.xml and SWPlatform, describing the HW components (processor,

memories, buses, etc.) and the SW platform components (OS, drivers, etc.)
• Mapping.xml describing the allocation of the memory partitions to HW resources

Inputs

Eclipse
infrastructure

UML/
MARTE
model XML files

Code
Generation

SCoPE simulator/
Physical platform

Executable
file

Compilation
for simulation/
physical platf.

 Starting from these intermediate files, a code generator tool is called. This tool au-
tomatically generates a set of several files that are required to create the executable
files and the configuration files for the SCoPE generator. The creation of the executa-
ble files includes the following steps.

The first step consists in the generation of the C files implementing the semantics
of the channels. Generation of threads, service calls, data splitting and synchronization
mechanisms are implemented in order to generate the concurrent architecture defined
in the UML model. A file is generated for each application component defined in the
model, implementing the management required to provide the communication behav-
ior defined for each function of the component interfaces, depending on its role (pro-
vided or required).

The goals of the second step are the generation of wrappers for the interfaces re-
lated to each component. Transfer mechanisms are implemented in a generic commu-
nication library providing different implementations for inter-process communication,
intra-process communication and communications between different operating sys-
tems (TCP/IP). Thus, adaptation wrappers are required to connect the generic func-
tions of the library to each function of the component interfaces, considering the func-
tion name and the type, size and direction of the arguments and returned value. All
this information is encapsulated in generic buffers that are transferred by the commu-
nication library and recovered in the target component.

When memory space definitions indicate the type of transfer required for each
communication, main files are generated, one for each memory space. This enables
the support of multi-OS systems, and simplifies the integration of third party codes.

Finally, all the generated C files are compiled together with the application files
provided by the user using the Makefiles generated from the UML/MARTE model.
Then, the compiled code can be executed in the SCoPE simulator together with the
XML files required to configure the virtual platform. This compiled compiled code
can also be used for is integration in the physical platform.

5 Application Example

The UML/MARTE approach proposed has been applied to a MPEG-4 encoder
application, trying to decide on an optimal implementation on an OMAP4 HW plat-
form. The MPEG-4 encoder is an industry-standard, consisting of a motion-estimation
and compensation phase followed by transformation and entropy coding phases. The
UML model created contains a set of functional blocks: MEMC (MotionEstimation-
MotionCompensation), TCTU (TextureCoding-TextureUpdate), EntropyCoding (EC)
and BitstreamPacketizing (BP).

The MPEG-4 encoder implementation used in this paper enables different system
configurations to be established by modifying the channel semantics of the model,
following figure 1. From an initial sequential implementation, channel semantics en-
able the definition of different parallel regions. Additionally, several copies of a paral-
lel region can be called in parallel, operating with split data. Automatically generated
code controls the concurrency, data management and synchronization required to
interconnect all the components.

During the exploration, the 6 configurations shown in figure 1 have been evaluated
with the simulation tool, as shown in table 1. As a result, one of the best configura-
tions found (“concurrent 3”) has been automatically integrated into the final platform
without additional effort.

Table 1. Performance estimations obtained by the simulator during the exploration phase.

Architecture Sequential Concurrent 1 Concurrent 2 Concurrent 3 Concurrent 4 Concurrent 5
Estimated
time

12.54 s 8.25 s 7.26 s 6.82 s 6.86 s 6.82 s

6 Conclusions

The paper presents an approach for easy exploration of concurrency architectures
in embedded designs. The approach takes advantage of an extension to UML/MARTE
to model the different architectures, and automatically synthesize the SW communica-
tions from the UML/MARTE models. The automatic synthesis process and the inter-
mediate generation of XML files enable easy exploration of different allocations of
SW components using the SCoPE tool. From the UML model, a generator synthesizes
the communication wrappers and the main C files in a completely ad-hoc way for the
application, reducing the overhead obtained with more generic design alternatives.

The approach enables easy and early exploration of the system concurrency archi-
tecture, simplifying the consideration of constraints in the design process, and obtain-
ing the final executable file for the physical platform from a single, integrated flow.

References
1. Y. Vanderperren, W. Mueller, and W. Dehaene, “UML for electronic systems design: a

comprehensive overview,” Design Automation for Embedded Systems, 2008.
2. L. Lavagno, G. Martin, B. Selic. “UML for real: design of embedded real-time systems”,

ISBN 1-4020-7501-4
3. Zeligsoft CX, www.zeligsoft.com
4. É. Piel, R. Atitallah, P. Marquet, S. Meftali, S. Niar, A. Etien, J.-L. Dekeyser, P. Boulet:

“Gaspard2: from MARTE to SystemC Simulation”, proc. of the DATE'08 workshop, 2008.
5. V. Papailiopoulou, et al: “From design-time concurrency to effective implementation paral-

lelism: The multi-clock reactive case”. Electronic System Level Synthesis Conference, 2011
6. An Embedded System Modeling Methodology for Design Space Exploration. JCE 2012.
7. J. Barba, F. Rincón, F. Moya, J.D. Dondo J.C. López. “A comprehensive integration infra-

structure for embedded system design”, Microprocessors and Microsystems, 2012.
8. A. Pimentel, C. Erbas: A Systematic Approach to Exploring Embedded System Architecture
at Multiple Abstraction Levels, IEEE Transactions on Computers, vol 55, Feb 2006
9. T. Kangas, P Kukkala et al: “UML-based Multiprocessor SoC design Framework”, ACM
Transactions on Embedded Computing Systems, May 2006
10. SCoPE www.teisa.unican.es/scope
11. P. Peñil, H. Posadas, A. Nicolas, E. Villar: “Automatic synthesis from UML/MARTE

models using channel semantics”, ACES-MB workshop, Models 2012

